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Abstract 

 
 
This paper describes the initial development and testing of the Black-corrected 
version of a workhorse 3-factor Gaussian yield curve (term structure) model, the 
economic factor model (Dempster et al., 2010) which we have used for many years 
with Monte Carlo scenario simulation for structured derivative valuation, investment 
modelling and asset liability management with various time steps and currencies. In 
common with most alternative approaches in the literature to generating non-
negative yields using Black's idea, we propose a simple approximation to the Black 
mathematical model using the nonlinear unscented Kalman filter. However, its 
calibration, unlike that of the current computationally intensive alternatives, requires 
not significantly more computing time than is needed for the linear Kalman filter with 
the underlying affine shadow rate model. Initial empirical testing of the new Black 
EFM model both in- and out-of-sample shows acceptable accuracy, sometimes 
improved over the affine EFM model, which can be improved by UKF tuning in future 
research. Migration of the system to the cloud can reduce calibration times for both 
models from a few hours to a few minutes by exploiting massive parallelization of the 
computationally intensive step. 
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Developing a practical robust long term yield curve model 
 

 
1.   Introduction 
 
Since the 2007-2008 financial crisis low interest rates have prevailed in all the world's major 
developed economies, presaged by more than a decade in Japan. This has posed a 
problem for the widespread use of diffusion based yield curve models for derivative and 
other structured financial product pricing and for forward rate simulation for systematic 
investment and asset liability management. Indeed, while Gaussian models remained 
sufficiently accurate for pricing and discounting in relatively high rate environments, their 
tendency to produce an unacceptable proportion of negative forward rates at short maturities 
with Monte Carlo scenario simulation from initial conditions in low rate environments has 
called their current use into question. The implications for this question of negative nominal 
rates in deflationary regimes remain to be seen, as does the necessity for currently 
fashionable multi-curve models. Be that as it may, beginning with work in the Bank of Japan 
in the early 2000s, there has recently been a flurry of research in universities, central banks 
and financial services firms to develop yield curve models whose simulation produces non-
negative rate scenarios. 

 
This paper concerns the preliminary development of a robust long term yield curve model 
which is a (mildly) nonlinear version of our workhorse Gaussian 3-factor affine yield curve 
model, the Economic Factor Model (EFM), which we have used for Monte Carlo scenario 
generation over many years in practical structured derivative pricing, investment and asset 
liability management. We have employed the EFM model in the past using time steps from 
daily to semi-annual in the five major currency areas: EUR, CHF, GBP, USD and JPY. Its 14 
parameters are calibrated to market data using the expectation-maximization (EM) algorithm 
which alternates the linear Kalman filter (KF) with maximum likelihood parameter estimation 
(MLE) to convergence. Here we implement a Black(1995) corrected version of the EFM 
model (Black EFM) using the nonlinear unscented Kalman filter (UKF) in place of the 
ordinary KF. This represents an approximation to the mathematical Black model in the 
presence of Black's piecewise linear 0-strike call option nonlinearity which suppresses 
negative rates. Indeed, while we use the EFM affine closed form expressions for yields at all 
maturities, it should be noted that the zero lower bound will be inactive for all but those of 
short, but not necessarily the shortest, maturities.  
 
Our approach appears promising both in calibration and forecasting accuracy relative to both 
market data and the EFM model, even at short maturities, but further work is necessary in 
both empirical testing and the development of the UKF. 
 
The remainder of the paper is structured as follows. After enunciating our guiding design 
requirements, Section 2 summarizes existing yield curve (term structure) models developed 
for both pricing and forecasting. It illustrates the nature of the difficulties encountered with 
each model in terms of our requirements. In Section 3, the details of the basic EFM model 
are set out and the Black correction is defined. Section 4 contains a survey of recent 
contributions to approximating Black-corrected affine yield curve models whose calibrations 
are all (too) heavily computationally intensive. These models are often (in our view mis-) 
designated "shadow rate models", a term introduced by Black for the underlying Gaussian 
model to be corrected for non-negative rates. Our approximate, but accurate, Black EFM 
model is described in Section 5, which presents the unscented Kalman filter in detail, 
including our HPC implementation still under development. Section 6 presents the empirical 
evaluation of the model in terms of both in-sample calibration and out-of-sample scenario 
generation, using data for the above five major currency areas. Although there remains room 
for improvement, the Black EFM model is found to be sufficiently accurate for both purposes. 
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Conclusions are presented in Section 7, in which it is noted that on average the runtime of its 
computationally intensive calibration is only double that of the original EFM model -- a very 
significant improvement on the current alternatives in the literature. An appendix gives a step 
of the EM algorithm for the EFM model in pseudo code form. 

 
 
2.   Existing models and their drawbacks 
 

The range of yield curve models discussed in the literature is vast. The task of 
choosing a suitable model for a variety of purposes, including trading, systematic 
investment, asset liability management and structured product valuation, is non-
trivial. There are relatively few papers in the literature that measure (as opposed to 
just discussing) the comparative advantages of more than a handful of different 
models, as the implementation of the more complex ones is a time consuming 
process. Therefore in developing a suitable new model it is important to start out 
from a clear formulation of model requirements, so that the set of possible suitable 
choices is limited.  

Requirements for model development 

The principal applications of the model we envisage are the following: 

 Scenario simulation for a diverse set of (predominantly long-term) asset 
liability management (ALM) problems for multiple currencies 

 Valuation of complex structured derivatives and loans (which often have 
embedded derivatives) 

 Risk assessment of portfolios and structured products.  

The problem of model selection has been discussed in Dempster et al. (2010) and 
2014). We shall borrow some of the requirements for the new yield curve model from 
these works and extend them here. These include: 

1. A continuous-time framework to allow the flexibility of using different time 
steps, including uneven time steps 

2. Exhibit mean-reverting behaviour 
3. Allow both pricing and dynamic evolution under the market (real world) 

measure, i.e. the model should reflect the market risk premium1 
4. Reproduce a wide range of yield curve shapes and dynamics (to allow for 

realistic risk assessment, for example), including steepening, flattening2, 
inverted and humped yield curves  

5. Incorporate realistic modelling of the zero-lower bound (ZLB) empirically 
observed for zero-coupon bond yields 

6. Calculate bond prices computationally feasibly and economically  
7. Calibrate the model to market data by estimating parameters similarly 
8. Allow estimation and use of the model for multiple correlated yield curves and 

currency exchange rates 

                                                                 

1 As argued in Nawalkha and Rebonato (2011), this is especially relevant for the buy-side practitioner. For sell-side banks it 

usually suffices to do pricing and initial hedging calculations under the risk-neutral measure from the forward market data on 

the day . Having an exact fit to the observed yields is thus more important for the sell-side. 

2 Products based on these properties of the yield curve are traded on the NYSE, e.g. US Treasury Flattener ETN (ticker: FLAT) 

and iPath US treasury Steepener ETN (ticker: STPP), although admittedly these are not very popular. 
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9. Parsimony 
10. Time-homogeneity. 

Clearly, the requirements related to ease and speed of calculations (6-8) contradict 
the requirements for model realism (2-5), so a compromise is necessary. 

The choice of the model made when the prevailing short-term yields are near-zero 
could  be different from that in a high-rate environment, but ideally the chosen model 
should cover all rate environments. However, the present global low-rate 
environment is the principal motivation for our work to improve on our workhorse 
affine yield curve model (Dempster et al., 2010).  The most important enhancement 
of our existing EFM model (see Section 3) is a better way of dealing with the zero-
lower bound for initial low short rates. 

If we assume that both normal and low rate environments are probable in the 
medium to long term future, and that once the situation reverts to normal levels away 
from zero it will be reasonably similar to the nominal rate environment before the 
crisis, a prudent decision would be to try to construct a model that is suitable for both 
environments.  

Overview of available modelling options 

To analyse the potential choices we can first divide most yield curve models into  
three broad overlapping classes: 

 Short rate models 

 Models in Heath-Jarrow-Morton (HJM) framework 

 Market models. 

Short rate models are based on modelling a process for the instantaneous interest 
rate which is then used to derive zero coupon bond prices, i.e. discount factors, or 
their yields at different maturities. This class of models is the oldest and probably the 
most extensively researched. 

The HJM models start from modelling instantaneous forward rates directly. A feature 
of this framework is using the no-arbitrage property to derive constraints on the 
structure of forward rates. This framework is very general and convenient for 
studying arbitrage-free properties in theory. However, some of the models in this 
framework may be non-Markovian and most practical models coming from the HJM 
framework are either well-known short rate models or market models. 

The class of market models is focussed on describing the dynamics of the 
observable quantities (e.g. LIBOR and SWAP market models). They are especially 
useful for derivative pricing. However, under the current actually occurring low 
interest rate conditions, the popular LIBOR Market Model (see de Jong et al., 2001) 
may require parameter estimates that are unrealistic (e.g. simulated cash returns 
more volatile than actual equity returns, with significant weight assigned to interest 
rates of more than 10,000%).  

Some authors also categorize stochastic volatility models (such as SABR) 
separately. 

Model and computational complexity considerations, as well as the applications 
envisaged, suggest that short rate models are the most suitable class for our needs. 

There are other factors influencing our considerations. First, we have long successful 
experience with utilization of the economic factor model (EFM model) (see Section 3) 
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in situations in which the rate zero-lower bound is not binding. We have confidence 
in the performance of the EFM yield curve model in these situations, so we would 
prefer our new model not to deviate too far from it. 

Secondly, most of the current research on zero lower bounds is done in the 
framework of short rate models. Having a way of estimating the level of "shadow" 
rates may be useful, not least because some policy makers appear to monitor them. 
There have been attempts in the research literature to use the "shadow" short rate 
and its distance to zero as a forecast of the estimated time until the low-rate regime 
is lifted, see Ueno et al. (2006) and Wu and Xia (2014). The Federal Reserve Bank 
of Atlanta publishes the Wu-Xia Shadow Federal Funds Rate based on the Wu and 
Xia paper. It should be noted, however, that the level of the shadow rate is not a very 
reliable indicator, as it is strongly model-dependent (see Bauer and Rudebusch 
(2013) and Christensen and Rudebusch (2013)). 

A review of the literature on short rate models shows that most popular sub-class of 
short rate models in empirical research and applications are the Affine Term 
Structure Models (ATSMs), due to their analytical tractability, flexibility and empirical 
efficiency. 

This class of models includes Vasicek (1977), Dothan (1978), Cox-Ingersoll-Ross 
(1985), Ho-Lee (1986), Hull-White (1990) and many other one- and multi-factor 
models. 

Analysis of one factor short rate models 

To illuminate the analysis that we undertake below for the more complex multi-factor 
models, we first discuss the characteristics of the simpler one-factor models.  

The stochastic differential  equations (SDEs) governing the evolution of the short 
rate under the risk-neutral or pricing measure Q for the respective models are:3 
 

1. Vasicek (1977) 

                                               ( X )t t td dt d    X W                                           (1) 

2. Dothan (1978) 

                                               Xt t t td dt X d   X W                                            (2) 

3. Cox-Ingersoll-Ross (1985) 

                                           ( X )t t t td dt X d    X W                                         (3) 

4. Ho-Lee (1986) 

                                                    t t td dt d  X W                                                  (4) 

5. Hull-White (1990) 

                                              ( X ) .t t t t td dt d    X W                                          (5)  

 

It is easy to see that Hull-White ( also called extended Vasicek) is the most general 
of these models. It can fit any term structure exactly, because of the time-dependent 

                                                                 

3 
We use boldface type in the sequel to denote stochastic entities, here conditionally. 
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equilibrium drift coefficients θ t . However, having such a time-dependent parameter, 
as in the Ho-Lee and Hull-White models, contradicts our requirements 9-10, i.e. 
parsimony and time homogeneity. 

The Ho-Lee model lacks the desired mean-reversion property and the Vasicek, Ho-
Lee and Hull-White diffusion models can all produce negative yields. The Dothan 
and Cox-Ingersoll-Ross models produce positive yields, but the short rate in these 
models never hits the zero lower bound. In other words, the zero lower bound in 
these models is repelling instead of absorbing. This is not consistent with the 
historical data observed in developed countries.  

Note that the multi-factor square root (CIR) model and  quadratic Gaussian models 
(QGMs) are also unable to reproduce the absorbing ZLB. 

The Vasicek, Dothan and Cox-Ingersoll-Ross models do not satisfy our requirement 
4, i.e. the yield curve shapes attainable with these models are constrained. 

Choosing a time-homogenous structure for our model, by not using non-stationary 
parameters in the corresponding SDE, means that exact matching of the yield curve 
is not possible with a small number of factors. 

Analysis of multi-factor short rate models 

The number of factors necessary for adequate modelling of the whole term structure 
has been analyzed in  Litterrnan & Sheinkman (1991). Their principal component 
analysis of data showed that 99% of the variance can be captured by 3 factors.  

It is well-known (see e.g. Nawalkha and Rebonato, 2011) that single-factor and two-
factor time-homogenous models deviate significantly from the initially observed bond 
prices. However, three to five factors produce a close fit. The Nelson -Siegel (1987) 
model widely-used in central banks uses three factors to estimate the entire yield 
curve but has time inhomogeneous parameters, except in the Diebold-Rudebusch 
arbitrage-free version of the model (see Rebonato, 2015).  

Rebonato and Cooper (1995) argued that a two-factor affine or quadratic model 
cannot reproduce a realistic correlation structure of interest rate changes, but that 
three to five factors are sufficient for this purpose. 

So it seems that a reasonable choice (taking into account additional computational 
complexities connected with introducing the ZLB property) would be an affine short 
rate model with 3 factors. 

Classification of 3 factor affine short rate models 

Duffie and Kan (1996) derive necessary and sufficient conditions on the SDEs to 
have an affine representation and Dai and Singleton (2000) analyze the different 
subfamilies of affine term structure models. Dai and Singleton's analysis for the 3-
factor case shows that some affine subfamilies explain historical interest rate 
behaviour better than others. 

The SDEs for their factors are of the form 

                                         ,t t t td X dt S d   X W                                      (6) 

with X  the K-dimensional state vector; W K-dimensional Brownian motion;   a fixed 

point in K-dimensional space; Λ, St and   K K  matrices and St a diagonal matrix 
with diagonal elements satisfying 
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                                     1,..., ,t i i tii
S X i K                                                     (7) 

with prime denoting transpose. 

For an admissable parametrization, the bond prices can be calculated as 

                                                     ( ) ( )
( ) ,tA B X

tP e
 


                                                 (8) 

 where  A and B are solutions of certain ODEs (see e.g. James and Webber, 2000).  

The instantaneous short rate is also an affine function of the state 

                                                       
0 .Q Q

t X tr X                                                        (9) 

Zero coupon bond prices in terms of expectations under the risk-neutral Q measure 

are given by 

                                             ( ) exp .

t

Q

t t s

t

P E r ds




  

   
   

                                           (10) 

Zero coupon bond yields to maturity, termed rates, are linked with the bond prices by 

                                                 ( ) log ( ) / .t ty P                                                    (11)       

There are models that lack affine structure (and thus forfeit simple formulae for bond 
prices) but a vector of K rates Rt  of  specified maturities may sometimes still be 
recovered as the numerical solution of the Ricatti equation 

                                   
( ) 1

( ) ( ) ( ) r 1 ,
2

t
t t t t

R
R R S R


  




     


                                  (12) 

where 1 is the K vector of ones. 

Dai and Singleton (2000) denote different affine subfamilies by ( )mA n  with n   the 

number of factors and m n   the number of bounded factors. They perform empirical 

tests on the different subclasses for n equal to 3. 

Dempster et al. (2014) also analyze different 3-factor models with requirements 
similar to ours to uncover a variety of shortcomings with the models evaluated. They 
were led to introduce a Black-corrected affine model which always produces non-
negative rates.4  In their paper, they summarized in a table the stylized features 
satisfied by the alternative models they evaluated, which is reproduced here as 
Table 1. 

Most recent papers considering Black-corrected models have been based on the 

0 (3)A  class. The EFM 3 factor model described in the next section, which has proven 

itself in a variety of different applications, also belongs to this class. 

                                                                 

4 
We shall describe the Black correction in the next section. 
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In summary, we have stated a number of desirable requirements for a yield curve 
model and we have briefly analyzed the range of available models. We determined 
that the short rate class is the most suitable for our needs and within this class it 
seems that the most reasonable decision a priori is to evaluate the family of models 

with 3 factors, in particular, within the 0 (3)A  affine class.  

 
3.   Towards a long term low rate nonlinear Black model 
 
Around the turn of the last century, a famous Austrian economist, Eugen von Bohm-
Bawerk (1851-1914), declared that the cultural level of a nation is mirrored by its rate 
of interest: the higher a people’s intelligence and moral strength, the lower the rate of 
interest. (Homer and Sylla, 2005). 
 
As a low rate environment has prevailed in most major developed countries since 
2008, in Japan since the early 1990s, it is crucial to realistically model rates 
behaviour in these circumstances. We will present a Black-corrected version of the 
economic factor model discussed in Medova et al. (2006), Yong (2007) and. 
Dempster et al. (2010).  
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Basic EFM model 

We first present the original economic factor model (EFM) of the yield curve 
which we have used previously in a variety of applications in the five principal 
currency areas with various time steps from daily to quarterly.5  

The evolution under the risk-neutral measure Q of the 3 unobservable (i.e. latent) 
factors of the model is governed by the SDEs 

 

 

 

  ,

X

t X X t X t

Y

t Y Y t Y t

R

t t t t R t

d X dt d

d Y dt d

d k X Y R dt d

  

  



  

  

   

X W

Y W

R W

  (13) 

with fixed pair- wise correlations of the standard Brownian motion innovations given 
by 

                                                 ( dt, dt, dt) .XY XR YR                                                  (14) 

The stochastic evolution of the factors under the market (i.e. real-world) measure P 
involving the market prices of risk of the 3 factors is governed by  

 

.

XX X
t X X t X t

X

YY Y
t Y Y t Y t

Y

RR R
t t t t R t

d X dt d

d Y dt d

d k X Y R dt d
k

 
  



 
  



 


 
    

 

 
    

 

 
     

 

X W

Y W

R W

  (15) 

The first factor Xt represents the long rate and the third factor tR  the short rate. The 

second factor Yt   represents minus the slope of the yield curve between the long rate 
and the unobservable instantaneous short rate.  Thus the sum of the first two factors 
Xt + Yt represents the unobservable stochastic instantaneous short rate about which 
the observable short rate Rt  mean reverts.  

Note that as the X and Y equations have the same form the factor dynamics under Q 
given by (13) are not econometrically identified, i.e. the parameters are not uniquely 
determined in that different sets will generate the same factor dynamics. However, 
the factor dynamics under P given by (15) are identified by virtue of expressing the 
factor market prices of risk in volatility units. Also note that the rates of mean 
reversion of the three factors are identical under P and Q. As a result, the 
parameters of the dynamics must be estimated from market data under the P 
ηmeasure and the resulting market price of risk estimates set to 0 to generate the 
dynamics of the Q measure for pricing. 

The SDEs (13) and (15) have explicit solutions. Substituting the explicit solutions of 
the SDEs (13) into the sum of the first two factors and using (10) and (11) produces 
closed-form formulae for bond prices and yields in affine functions of the SDE 
parameters (see e.g. Medova et al. ( 2006), and Yong (2007) for the factor 
                                                                 

5 
It is interesting to note that this model originated at Long Term Capital Management and was first 

brought to our attention by Lehman Brothers under the auspices of Pioneer Investments of UniCredit 
Bank. It has been attributed to Chi Fu Huang but we have been unable to verify this. 
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covariance matrix). In particular, denoting the 3 latent factors at time t in vector form 

by : ( , , ) ',t t t tx X Y R  the yields of the K different maturity zero coupon bonds are given 

in affine form by 

 
                                                                                   

,t ty Bx d                                                       (16)                                                                   

where  B and d are closed-form deterministic affine functions (matrix or vector-
valued) of the SDE parameters.  

Basic EFM calibration 

Calibration of the EFM model is a non-trivial task even without the Black 
correction. The parameters of the model are estimated using a version of the 
expectation-maximization (EM) algorithm (Dempster et al., 1977) which 
iterates to parameter convergence the Kalman filter (KF) to generate sample 
paths and maximum likelihood estimation (MLE) of parameters for each path. 
Given a fixed set of parameters, the Kalman filter produces estimates for the 
unobserved states of the factors and prediction for the yields from (16). These 
are then used as the observed sample for the next numerical parameter 
optimization step of MLE. 

Note that for the EFM model in state space form, MLE is trying to fit all of the 
observed rates approximately, in contrast to other approaches which often fit a 
small number of rates (equal to the number of factors) exactly. 

KF transition equation 

Taking the discretization time step Δt := 1, the Euler approximation of the 
SDEs for the 3 factor state variables becomes the state variable transition 
equation  
 1t t tAx c   x   , (17) 

where  η t  ~  N(0, G) is the Gaussian innovation, with A, c and G  deterministic matrix 
or vector-valued functions of the SDE coefficients. 

KF measurement equation 

The corresponding measurement equation is 
 

 obs

t t tBx d  y   , (18) 

where obs

ty corresponds to the yields observed in the market and B and d are defined 

above. The centred measurement error process t  is  a K vector serially 

independent Gaussian noise with covariance matrix H.6  

Given a data series for the observed yields obs

ty the Kalman filter generates an 

estimated expected path of the Gaussian state variables, and their conditional 

                                                                 

6 
But see Dempster and Tang (2011) regarding handling measurement error serial correlation, which 

we intend to implement in future research. 
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covariance matrix   | 1t t . The filter is initialized using unconditional moments. 

Following Harvey (1993) gives 
 

                                                      1

0
ˆ : (I A)x c                                                     (19) 

 
1

0( ) : (I A A) ( ) ,vec vec G      

where   is the Kronecker product, vec(.) is the operation of writing out a matrix as a 

vector and G is the covariance matrix of the factor dynamics innovations   . The 

matrix A  and the vector c  are the entities in the transition equation (17) and the 

elements of  Σ0 can be computed analytically. 

KF prediction 

 
| 1 1

ˆ ˆ
t t tx Ax c      

 
| 1 | 1

ˆ ˆ
t t t ty Bx d     (20)

 
 | 1 1

T

t t tA A G        

KF update 

      | 1 | 1
ˆ ˆ: obs obs

t t t t t t tv y y y Bx d         

                                                    
| 1t t tF B B H

  
                                           (21)             

 

1

| 1 | 1
ˆ ˆ T

t t t t t t tx x B F v

    

 1

| 1 | 1 | 1t t t t t t t tB F B

  
       

   

Quasi  MLE parameter estimation 

Letting  denote the 14 SDE model parameters of the transition equation and  

defining   : , H   ,  the log-likelihood is given by 

 1

1 1

1 1
log L( , ) log 2 logdet .

2 2 2

T T

t t t t

t t

TK
H F v F v 

 

        (22) 

where K is the total number of maturities used, T is a the number of time steps and v 

and F are computed using (20).  

The maximization of the log likelihood is performed in two steps, alternatively 
optimizing   and H  to convergence. There are two phases of the numerical 
optimization: a global phase using the DIRECT global optimization algorithm (Jones 
et al., 1993) to locate the region of the maximum, followed by a local phase using an 
approximate conjugate gradient algorithm (Powell, 1963) to locate the maximum 
itself.  

Black correction 

The distribution of the instantaneous short rate tr   is Gaussian in most yield curve 

models, therefore it is easy to see that it can become negative when initialized at a 
low level. Black (1995) suggested a way of solving this problem. He argued that 
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nominal rates cannot become negative, because there is always the option of 

investing in the (0-yielding) currency instead. Black started from a process  ts  which 

can take negative values, which he called the shadow short rate, and the nominal 
short rate is then defined as                                                                                                                                         

                                                    
max(0, ) .t tr s                                                      (23) 

This modification makes all the yields calculated through the bond price formula non-
negative. A similar model was independently discussed by Rogers (1995). 

Unfortunately, the shadow short rates implied by affine models lose their linearity 
when modified using this idea. This makes the resulting models difficult to calibrate. 
We shall discuss different approaches to calibration in the next section. 

 

4.   Alternative approaches to calibrating Black models 
 
Although Black's idea was proposed in the 90s, the first implementation followed 
seven years later in the work of Gorovoi and Linetsky (2002). Active work on 
extensions to multi-factor models started only after the crisis of 2008. There are two 
main reasons for such a timeline. First, the zero-lower bound was not observed in 
the U.S. from the Great Depression until 2008; only in Japan from the mid-1990s did 
rates in a major economy start hitting zero. Perhaps more importantly, the 
implementation of the Black correction is considerably more difficult (both 
theoretically and computationally) than implementation of the usual affine term-
structure models. The main problem is the lack of a closed form formula for the bond 
price given by 

                               

( ) exp max( ,0) .

t

Q

t t u

t

P E du




  

   
   

 s

                                         

(24) 

1-factor Black models 

Gorovoi and Linetsky (2002) showed that for a shadow short rate following a 1-
dimensional diffusion process, the zero-coupon bond price can be calculated as the 
Laplace transform (at the unit value of the transform parameter) of the area 
functional of the shadow rate process. They applied the method of eigen function 
expansions (see Linetsky, 2002; Davydov and Linetsky, 2003; Linetsky, 2004) to 
derive the quasi-analytic formulae (relying on Weber-Hermite parabolic cylinder 
functions) for the bond price in the Vasicek and shifted CIR process cases. 
Unfortunately their method works only in the scalar case. 

Gorovoi and Linetsky applied their method to estimating yield curve models for a 
single time point. However, their method was used by Ueno et al. (2006) for the 
Japanese market who applied the method to a dynamic model with a market price of 
risk.  

The shadow rate ts   in these models follows a diffusion, therefore in state space 

form the single discretized transition equation takes the form 
 

                                                                       1 .t t tax c   x 
                                                                                 (25) 



14 

 

The mapping that links observed yields and the shadow rate is no longer linear, so it 
takes the piecewise linear form                                                                              

                                                                                 
( ) .obs

t thy x
                                                     

(26) 

Ueno et al.(2006) applied the Kalman filter with conditional linearization of (25) to 
calibrate the model. However, it was clear from their results that further work in 
developing the shadow rate models would be needed. For example, the shadow 
rates in their analysis reach the implausibly low levels of  -15%, which suggests 
model misspecification.  

2-factor Black models 

Both Bomfim (2003) and Kim and Singleton (2011) relied on a numerical (finite-
difference) method for solving a 2-dimensional parabolic quasilinear bond price PDE 
given by  

              

 
2

1
( x) max 0, ( ) 0

2

t t t
t

P P P
tr K s x P

x x x




   
      

                                     (27)

 

with boundary condition ( 0, x) 1P    . Here the short rate ( )s x  is an affine function 

of  the state 2-dimensional state x .   

Bomfim (2003) estimated the parameters of his model on the subset of data where 
rates were safely above zero, using an analytical approximation, i.e. the usual affine 
model. Kim and Singleton (2011) used the extended Kalman filter with quasi-
maximum likelihood to estimate the parameters. Ueno et al. (2007) performed a 
sensitivity analysis of the 2-factor Black-corrected model without estimating the 
parameters. 

Kim and Singleton and Ueno et al. report superior performance of the shadow rate 
models compared to their standard affine term structure equivalents (for the shadow 
rates). Two-factor models also produce more plausible levels of the shadow rate. 
However, the analysis of Section 2  suggests that 3 factors would be preferred for 
realistic modelling. Unfortunately, the alternating direction implicit finite difference 
scheme used by Kim and Singleton cannot easily be extended to the corresponding 
PDE in 3 dimensions. 

Krippner (2013) applies a different method, which can be seen as an approximation 
to the Black model. The advantage of his method is that the forward rates have 
closed-form formulae. In the Black model, the price of a bond can be  expressed as 

                                     ( ) ( ) C ( , ;1) ,S A

t t tP P                                                          (28) 

where ( )S

tP   is the shadow bond price ( i.e. the price of a bond in a market where 

currency is not available) and C ( , ;1)A

t    is the value of an American call option at 

time t  with maturity in   years and strike 1, written on the shadow bond maturing in 

  years.  There is no analytic formula for C ( , ;1)A

t   , but Krippner argues that the 

American option can be approximated by an analytically  tractable European one 
and introduces an auxiliary bond price equation 

                                    
( , ) ( ) C ( , ;1) ,aux S E

t t tP P                                                         (29) 



15 

 

where C ( , ;1)E

t     is the value of a European call option at time t with maturity at 

time t   and strike 1 written on a shadow bond maturing at t    . Krippner then 

takes the limit with 0   to obtain the non-negative (due to future currency 

availability immediately before maturity) instantaneous forward rate as 

                                    
0

( ) lim ln ( , ) .aux

t tf P


   


 
    

                                         (30) 

The non-negative yield with maturity  τ  in Krippner's framework is calculated as 

                   
0

C ( , ;1)1 1
y ( ) (s)ds ( ) lim ds .

( )

t t E
S t

t t t

tt t

f y
P s

 



  
 

   

 



 
    

  
                       (31) 

Here ( )S

ty   are the shadow bond yields. Unfortunately, closed-form analytic 

expressions for the bond prices and yields are still not available, but they can be 
evaluated through calculating integrals that are numerically tractable. More 
importantly, Krippner's approach is not fully arbitrage-free. The short rates are 
identical under the market measure P in the Black and Krippner frameworks but 
different under the risk-neutral measure Q. Krippner's approach is extendible to 3-
factors. 

3-factor Black models 

There are several approaches to calibrating 3-factor shadow rate models. Most of 
the differences between them can be classified in terms of the following: 

1. Method of calculating bond prices 
a. Monte-Carlo simulation 
b. PDE solution 
c. approximate formulas 

2. Method of inferring states from the observed yields 
a. inverse mapping (or least-squares) 
b. extended Kalman filter (EKF) 
c. iterated extended Kalman filter (IEKF) 
d. unscented Kalman filter (UKF) 

3. Method of optimizing the QMLE objective 

Monte-Carlo simulation or PDE solution for bond pricing 

Dempster et al.(2012) report the development of a 3-factor Black-corrected model 
using a combination of analytical closed form yield calculations and Monte Carlo 
simulation for bond pricing.  They suggest using the unconditional likelihood function 
and multiple starting points for parameter optimization, as there will be numerous 
local maxima for the problem. 

Bauer and Rudebusch (2014) use Monte-Carlo simulations (circa 500 paths of the 
shadow short rate) to calculate the bond prices. They employ the EKF to infer the 
states from the observed yields. However, they report using the same workaround as 
Bomfim (2003), i.e. estimating the parameters of the model on the subset of data 
where the ZLB is not important, to compare the shadow rate and affine models in 
practice. 
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Richard (2013) estimates the full Black shadow rate model. He notes that calibration 
"requires a long time, literally a month, on large and fast computers to estimate"7. He 
solves the 3 dimensional PDE for bond prices using an implicit numerical scheme.  

Lemke and Vladu (2014) have applied the Monte-Carlo bond price calculation 
method and the EKF to construct yield curves in the Eurozone.  

Krippner (2013) suggests using the Krippner framework results as control variates in 
Monte Carlo simulations for calculating the true Black model bond prices. 

Krippner approximation 

Christensen and Rudebusch(2013 a,b) apply the Krippner framework to estimate a 
3-factor shadow-rate model. They argue that the divergence of Krippner approach 
from the fully arbitrage-free Black approach is not very significant and well 
compensated by much greater tractability. Wu and Xia (2014) apply an approach 
equivalent to the Krippner framework in discrete time. 

Cumulant approximation 

Priebsch (2013) proposes to view the quantity 

                                  log ( ) logE exp max(0, )du .
t

Q

t t u
t

P



  

   s                              (32) 

as the value at -1 of conditional cumulant-generating function of the random variable  

( ) max(0, )du
t

t u
t






 S s  under Q. It can be expanded as 

                                      
1

log exp ( ) 1
!

Q
j jQ

t t

j

E
j








     S                                         (33)  

where Q

j  is the j -th cumulant of ( )tS   under Q and an approximation can be 

computed by taking a finite number of terms in this series. 

The method of Ichiue and Ueno (2013) is equivalent to using the first term 
approximation in (28). Priebsch (2013) evaluates both 1- and 2-term approximations 

by analytically deriving the expression for the first two moments of ( )t S . He shows 

that this technique is sufficiently fast and accurate to fit the term-structure within a 
half basis point for a single time step. Priebsch notes that the Krippner approximation 
tends to underestimate the arbitrage-free yields of the Black model, while the first 
order cumulant approximation tends to overestimate these yields, suggesting a 
systematic error. The errors of second order cumulant approximation do not appear 
to have a discernible bias in any direction.  

Andreasen and Meldrum use cumulant approximation to compare shadow rate 
models with quadratic term structure models to find that shadow rate models are 
better at out of sample forecasts. 

Filters 

Christensen and Rudebusch (2013), Bauer and Rudebusch (2014) and Lemke and 
Vladu (2014) use the EKF for parameter estimates. 

                                                                 

7 
In the latest version of the paper the search time has been reduced to 3 days but the methods used 

to achieve this are not specified. 
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However, Krippner (2013) uses IEKF to fit his shadow rate approximation for the 
case of 2 and 3 factors, because he found that using the EKF was not robust. 

Priebsch (2013) uses the unscented Kalman filter (UKF). Christoffersen et al. (2014) 
perform a series of comparisons of EKF with UKF and  the particle filter. They 
conclude that the UKF significantly outperforms the EKF and performs well 
compared to the significantly more computationally expensive particle filter. 

Likelihood optimization 

Most of the papers on shadow rate models omit discussion of the optimization 
methods used . Richard(2013) mentions that he maximizes the likelihood function by 
using Powell (1964) local search combined with Nelder-Mead global search. 

Summary 

Implementing the Black correction leads to non-linearity of the measurement 
equation,i.e. of the mapping of factors/states to yields, so that the classical Kalman 
filter is no longer applicable. Taking account of the information in the literature 
reviewed above, we will use the unscented Kalman filter (Julier et al.,1995; Julier & 
Uhlmann, 1997) for our shadow rate model. To calculate the bond prices, we will use 
the measurement equation approximation 
 

                                                                    
0 ( ) ,obs

t t tB d   y x 
                                                               (34)  

where    denotes coordinate-wise maximum at each step of the UKF dynamics. It   
will be demonstrated in the sequel that the computational times for our approach are 
very acceptable relative to those of the basic linear Kalman filtering  algorithm and 
the nonlinear KF alternatives. 

 

5.  Unscented Kalman filter EM algorithm for the Black EFM model 

As stated above, we will use the unscented Kalman filter for our development. 

Unscented Kalman filter 

We initialize the filter at the unconditional mean and variance of the state variables under the

P   measure in the EFM model. This can be justified by the fact that most of our datasets 

start before the onset of low-rate regimes.  

Since only the measurement equation is non-linear, the state prediction step is the 
same as that of the linear Kalman filter in (20).  

For the factor path update step of the UKF, the state is first augmented with the 
expected measurement error (here 0) of the linear KF to give 

                                                       

                                         | 1 |t 1
ˆ , ,a

t t t tx x E 

  
   

                                                (35) 

and the state innovation conditional covariance matrix  is augmented with the 
measurement error covariance matrix to give 
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| 1

| 1

0
.

0

a t t

t t
H





 
   

 
                                                                          (36) 

Next, a set of perturbed sigma-points is constructed as 
 

                                               

  

0

| 1 | 1

| 1 | 1 | 1

| 1 | 1 | 1

ˆ
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t t t t t t
j
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t t t t t t
j L

x

x L j

x L j L



 

 

 

  

  




    

     

                                      (37) 

where  denotes the matrix square root of the symmetric positive definite 
augmented matrix (36), whose j th column augments the conditional state vector to 
give the augmented conditional state vector. Here L is the dimension of the 

augmented state and the scalar parameter   is defined as 

                                                  2: ( ) ,L L                                                        (38) 

where   and   control the spread of the sigma points in an elliptical configuration 

around the conditional augmented state vector. The choice of these parameters is 
very important for the results of the calibration. We used a (NAG) code which sets  
  equal to 1 and   equal to 0, but we shall see that this is probably not the best 

choice. 

Next, the (here piecewise linear) measurement equation is evaluated at the 2L (= 34) 
sigma points to obtain 2L estimates of the augmented observations as 

 

                           | 1 | 1 | 1( ) 0 (B d) 1,...,2L.j j j

t t t t t th j                                           (39) 

 

These 2L sigma point results are then combined to obtain the predicted (here yield) 
measurements, measurements covariance matrix and predicted state-measurement 
cross-covariance matrix  

2

| 1

0

ˆ
L

j j

t t s t

j

y W 



  

                                       

2

| 1 | 1

0

ˆ ˆ
t t

L
j j j

y y c t t t t t t

j

W y y  



         
                                   (40)

 

   

2

|t 1 | 1 | 1

0

ˆ ˆ ,
t t

L
j j j

x y c t t t t t t

j

W x y   



           

 

where the weights  
jW  for combining sigma point estimates (predictions), are 

potentially different for the state vector and the covariance matrices. They are given 
by 
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 
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 


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 

  


                                (41)
 

Here β is related to the higher moments of the state vector distribution and is usually 
set to 2, which is optimal for Gaussian innovations. 

These results are used to compute UKF Kalman gain 

                                                                                                                                 

                                                                                     

1: ,
t t t tt x y y yK   

                                                 
(42) 

 

which defining  | 1 | 1
ˆ ˆ: obs obs

t t t t t t tv y y y Bx d       gives the updated state 

estimate in observation prediction error feedback form as 

                                                 |t 1
ˆ ˆ:t t t tx x K v                                                     (43) 

with updated state covariance matrix 
  

                                                                            
| 1 .

t tt t t t y y tK K                                                            (44) 

Choice of parameters for the UKF 

As noted above the choice of parameters ( , ,    ) for the UKF is very important and 

is not usually detailed in the literature (but see Tuner et al., 2012). Some nonlinear 
models are known to exhibit UKF algorithm divergence with certain parameter 
values. The other problem is inefficient estimation because of excessive spread of 
the sigma points. The first issue is not a problem here, but we aim to address the last 
issue in future research. 

Quasi maximum likelihood estimation 

Parameters estimates in the approximate Black corrected EM algorithm are 
calibrated from the current UHF data path prediction as before by maximizing the log 
likelihood function (21)  

1

1 1

1 1
log L( , ) log 2 logdet ,

2 2 2

T T

t t t t

t t

TK
H F v F v 

 

     
 

by alternating between the parameters Θ and H, except that now the  measurement 
prediction errors in the last term of the log likelihood are those of the UKF and the 
calculation of the  

   Ft  terms from (20) and (21) uses the UKF state covariance 

matrices  Σt  of (44). 

 

Technical implementation 

A Numerical Algorithms Group Ltd (NAG) routine was used for the UKF 
implementation, but an updated NAG routine with more key parameter setting 
flexibility will be used in future research. 
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The EM calibration code was implemented in C++ with quasi MLE optimization using 
global search with DIRECT (Jones et al.,1993) followed by a local (approximate) 
conjugate gradient algorithm (Powell, 1964) which does not require derivatives. 

The Black EFM  model calibration run-times for currencies with 12 years of daily data 
are around 4.5 hours (scaling linearly with data length). This is approximately twice 
the time the basic Kalman filter takes for EFM model calibration to the same data.  

HPC implementation 

The development was coded in C and C++ under Linux with the use of MPI 
functionality. Calculations are performed on 5 compute nodes with 32 cores in total 
and the following hardware: 

 Node 1: 

 Memory: 16GB  
 4 x CPU Xeon (X5550) 2.66GHz quad core 
 OS is Centos 5.7 

 Nodes 2 to 5: 

 4 x CPU Xeon (TM) 3GHz 
 Memory: 16GB 
 OS Centos 5.7 
 
The DIRECT global optimization algorithm to cope with the non-unimodal likelihood 
function was implemented in parallel in a master-slave configuration with 
synchronicity. The Powell local optimization algorithm is not parallelizable. 
 

The functionality actually parallelized was the full Kalman filter algorithm path 
estimation iteration step of the EM algorithm. The master thread controls the 
optimization calculation synchronizing 31 slave threads (number of cores = number 
of threads = 32), i.e. providing them at each optimization step with best step values 
of the log likelihood objective function and calculated filter predictions.  
 

 

 

Figure 1.  Parallelization Schema 
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When the Black EFM model UKF implementation is fully developed, we will migrate it 
to the cloud. We have already experimented with using the Amazon cloud for this 
model and have consulted on a compute intensive earlier Black model yield curve 
commercial development which uses this cloud (Dempster et al., 2014). 

 

6. Empirical evaluation of the model in- and out-of-sample 

This section contains a preliminary empirical evaluation of our approach to 
developing a robust long term nonnegative yield curve model from the EFM 
Gaussian model using the Black correction. We will evaluate the Black-corrected 
EFM yield curve model against the original EFM model and the market data used to 
calibrate the models, both in-sample, for goodness-of -fit, and out-of- sample, for 
prediction accuracy. 

Data 

We use a combination of LIBOR data and fixed interest rate swap rates (the ISDA 
fix) for each of 4 currency areas (EUR, GBP, USD, JPY) to bootstrap the yield curve 
daily for 14 maturities: 

3 month,  6 month, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years,            
7   years,    8  years, 9 years, 10 years, 20 years, 30 years.  

In the case of the Swiss franc (CHF), only 12 maturities are available: 

 3 month,  6 month, 1 year, 2 years, 3 years, 4 years, 5 years, 6 years,                      
 7 years, 8 years, 9 years, 10 years.  

The calibration periods used for these 5 currencies are the following: 

     EUR:  02.01.2001 to 02.01.2012      

     CHF:  02.01.2001 to 31.05.2013  

     GBP:  07.10.2008 to 31.05.2013 

     USD:  02.01.2001 to 31.05.2013 

     JPY:   30.03.2009 to 31.05.2013. 

       

After the 2012 Libor scandals, ICAP (formerly InterCapital Brokers) lost to ICE 
Benchmark Administration Limited its role as administrator for the ISDA fix rates, 
data collection and calculation. Major reforms in the calculation methodology are 
being implemented (changing sources from polls of contributing banks to actual 
transaction quotes). This transfer process is not without difficulties for data providers.  

The data was obtained from Bloomberg (indices US000**, BP000**, EE000**, 
JY000**, SF000** for LIBOR rates and USISDA**, BPISDB**, JYISDA**, SFISDA** 
for ISDAfix rates). 

Yield curve bootstrapping 

For the short rate maturities (T  in years equal to 0.25, 0.5, 1 ) we use only the 
LIBOR data and the formula (Ron, 2000) ) 
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                      (T) ln(1 LiborRate(T) 0.01 T) / T .y                                    (45)           

 

For the longer maturities we use the following process. If the coupons on the swaps 
are paid semi-annually( as is the case for USD,  GBP and JPY), then we calculate 
the discount factor for one year as  

                           (1) 1/ (1 LiborRate(1) /100) .df                             (46)           

If the coupon payments are annual, we use the formula 

 

             (1) 1/ (1 (0.5) /100 0.5) 1/ (1 (1) /100) .df LiborRate LiborRate                (47) 

We then proceed to calculate the discount factors  
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1

1
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swap rate
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
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






                             (48)           

where 1freq   for annual coupons and 2freq   for semi-annual coupons, 

_swap rate  is the swap coupon paid. 

 Finally, the rates are given by  

                                            ( ) log(d (T)) / T .y T f                                              (49) 

 

In-sample goodness- of-fit 

First, let us consider statistics for overall goodness-of-fit  across the entire sample 
period for the five currency areas EUR, CHF, GPB, USD and JPY, ordered by 
average rates in the data period from highest to lowest average rate. Table 2 shows 
the comparative goodness-of-fit, in terms of optimal log likelihood and standard 
deviation (vol) of the sample measurement  errors across all yields at the data 
maturities and all observations, of three models: the affine EFM estimated with both 
the Kalman and unscented Kalman filters and the Black EFM estimated with the 
UKF.  
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Currency Observations calibration 
log 

likelihood 
measurement 

error  vol 

EUR 2817 

EFM 232652.00 15 bp 

EFM UKF 252500.00 17 bp 

Black EFM 175569.00 45 bp 

CHF 3100 

EFM 232100.00 8 bp 

EFM UKF 250391.00 10 bp 

Black EFM 221358.00 8 bp 

GBP 1171 

EFM 98021.40 16 bp 

EFM UKF 103529.00 15 bp 

Black EFM 60642.70 60 bp 

USD 3093 

EFM 279114.00 15 bp 

EFM UKF 280745.00 25 bp 

Black EFM 182947.00 88 bp 

JPY 950 

EFM 91014.30 6 bp 

EFM UKF 84564.20 28 bp 

Black EFM 87035.10 8 bp 

 

Table 2. Comparative model goodness of fit 

This allows an overall comparison of the fitting errors of the original and Black 
corrected model and also of the size of the fitting error relative to the average level of 
rates in the currency area. From Figures 1 to 5 below we can see that the total 
measurement error vol of the best fit is very respectably small for all currency areas, 
EUR, GBP and USD being the highest and CHF and JPY the lowest. 

Although the three models in Table 2 have the same parameter set, their likelihoods 
are not generally comparable as the models are not nested in the econometric 
sense. However, the likelihoods of the affine EFM model estimated with the KF and 
the UKF are comparable and in all cases, except for Japan, the UKF likelihood 
exceeds the KF likelihood, a reflection of the general power of the UKF widely 
attested to in the literature. 

We may nevertheless compare the likelihoods achieved with the UKF for the affine 
EFM and nonlinear Black EFM models. Here the Black EFM likelihood exceeds that 
of the EFM for JPY and  the two likelihoods are close for CHF. In terms of total 
measurement error standard deviation the two models are also close, with the Black 
EFM giving the lowest value. However, as measured by both statistics, for EUR, 
GBP and USD the fits are significantly worse than the EFM for the Black-corrected 
model. 

We feel that this is likely because the NAG unscented Kalman filter code we used 
had the α parameter set to 1 (appropriate for high curvature nonlinearities) instead of 
the generally recommended 10-3, which would give a much smaller displacement of 
sigma points and be much more appropriate for the simple piecewise linear option 
"hockey stick" nonlinearity we are handling here with the UHF. We should probably 
also have a β parameter which reflects the positive skew in the Black EFM yields. 
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Turning to yield curve fits on specific days, Figures 1 to 5 show the yield curve fits of 
the Black EFM model on representative days throughout the data period for all five 
currency areas relative to both the data and the original linear EFM alternative. (We 
have in fact developed software that can show these yield curve fits stepping through 
every (daily) observation in the data.) Each figure shows both a "good" fit and a "bad 
fit" of the Black EFM model for a single currency. Root mean square error based on 
quarterly evaluation of the yield curve rates over 30 years (10 for CHF) is calculated 
using the model expression for the yield at each quarterly maturity in terms of the 
estimated parameters.  

Overall, the Black EFM model is broadly comparable to the original EFM model in all 
five jurisdictions.  However, GPB and USD are in general fit worse than EUR by both 
models and much worse than CHF and JPY. However, for GBP and USD the Black 
model fits the short end kinks (see Figures 3 and 4) significantly better than the 
original model (although both models are based on 3 factors), and similarly for the 
low rate JPY (see Figure 5). It should be noted that such non-text book yield curve 
shapes in the data period may reflect an behavioural market excess demand for 
short term bonds or have resulted from market manipulation, or both. 

On the other hand, the "bad" figures show that these short maturity rate spikes 
sometimes throw the Black-corrected model off completely. Again this appears to be 
due to the wide spread of the sigma points wired into the UKF code we have used 
which is most likely to affect the distributions sampled by the UKF at low short 
maturities.8  For our call option nonlinearity this produces too many sigma point zero 
estimates at short maturities which pull the UKF weighted average down and at 
longer maturities cause the weighted average to be too high due to the absence of 
enough low rate nonnegative paths. With a very much smaller α parameter this effect 
will likely be eliminated, which we hope to demonstrate with the updated NAG UKF 
code we will use in future research. 

Out-of-sample Monte Carlo projection 

Figures 7 to 10 show the results of monthly out-of-sample Monte Carlo scenario 
projection over a 30 year horizon using the EFM and Black EFM models calibrated to 
the last day of the data period, 31 May 2013. These are for 5 year rates for EUR and 
10 year rates in 3 currency areas: EUR, GPB and JPY. The figures show the 
evolution of the paths of the quartiles and 1% and 5% tails of the 10,000 scenario 

 

 

 

 

 

 

 

 

                                                                 

8 
In spite of the current negative rates for the 5 year bonds of Germany, Finland, Netherlands and 

Denmark. 
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Figure 2 
EUR  "Good". Date: 02 Jan 2007.   

  RMSE 

EFM 22 bp 

Black EFM 6 bp 

 

 

 

EUR  "Bad". Date: 18 Nov 2008. 

  RMSE 

EFM 33 bp 

Black EFM 82 bp 
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Figure 3 
CHF "Good". Date: 20 Aug 2001.    

  RMSE 

EFM 2 bp 

Black EFM 2 bp 

  

 

 

CHF "Bad". Date: 25 Jan 2002. 

  RMSE 

EFM 11 bp 

Black EFM 7 bp 
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Figure 4 
GBP "Good". Date: 02 Jan 2009.    

  RMSE 

EFM 40 bp 

Black EFM 19 bp 

 

 

 

GBP "Bad". Date: 16 Jul 2012. 

  RMSE 

EFM 22 bp 

Black EFM 63 bp 
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Figure 5 
USD "Good". Date:14 Oct 2008. 

  RMSE 

EFM 42 bp 

Black EFM 24 bp 

 

 

 

USD "Bad". Date:14 Oct 2008. 

  RMSE 

EFM 11 bp 

Black EFM 27 bp 
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Figure 6 
JPY "Good". Date:03 Apr 2012. 

  RMSE 

EFM 10 bp 

Black EFM 3 bp 

 

 

 

JPY "Bad". Date:08 Feb 2013. 

  RMSE 

EFM 14 bp 

Black EFM 20 bp 
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distribution. The actual market data evolution is also plotted on these figures up to a 
more recent date for each maturity and currency area: EUR, 11 December 2014;  
GPB, 15 January 2015 and JPY, 24 January 20149.  

These figures demonstrate the basic negative scenario generation problem with the 
Gaussian EFM model (cf. Dempster et al., 2014) and the primary effectiveness of the 
non-negative Black correction for the longstanding low rate Japanese economy 
(Figure 10).  

However, for EUR 5 and 10 year rates (Figures 7 and 8) and GPB 10 year rates 
(Figure 9), the dynamic effects of using too-wide sigma points as described above 
are visible. The scenarios therefore do not replicate the (short span of) market data 
in a period of declining rates (EUR) and quantitative easing (GBR). Again we hope to 
remedy this issue in future research. It is also interesting note that the problem 
effects are more severe for the shorter 5 year EUR maturity (taking account of the 
different vertical scales of Figures 7and 8). 

It should also be noted, by way of comparison of the spread of the 10 year rate 
scenario distributions as time evolves, that in spite of the difficulties the Black EFM 
produces  a much tighter, more realistic, spread over a 30 year horizon for all three 
economies than the diffusion based affine EFM model. 

 

7. Conclusion 

This paper reports on the initial development and evaluation of a new approximation 
of the Black (1995) correction to ensure non-negative nominal rates of all maturities 
for a practically effective Gaussian 3-factor affine yield curve model -- the EFM 
model. Perhaps the most important feature of this novel approach is the 
demonstrated fact that the HPC calibration of the Black EFM model can be effected 
in only about double the runtime of that of the underlying shadow rate EFM model. 
Although some difficulties with the unscented Kalman filter code used for this report 
have been identified, the results presented here are promising, both in- and out-of-
sample. We are confident that the issues identified here can be resolved in ongoing 
research.   
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After which date Bloomberg dropped JPY CMS swap data. 
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Figure 7 

Euro 5 year rate EFM
. 

 

 

 

 

Euro 5 year rate Black EFM 
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Figure 8 

Euro 10 year rate EFM 

 

 

 

Euro 10 year Black EFM 
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Figure 9 

GPB 10 year rate EFM. 

 

 

 

 

 

GBP 10 year Black EFM 
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Figure 10 

JPY 10 year EFM 

 

 

 

 

JPY 10 year Black EFM 
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Appendix 
 

Given an initial set of parameters 0 0( ,H ), the EM algorithm for estimation of the 

parameters of the EFM model from market data using the Kalman filter 
alternates between generating paths with the filter for the log likelihood function 
and optimizing this function in the model parameters. 
  
Defining  ( ,H) : log ( ,H)O L   , a single step of the EM algorithm for quasi MLE 

can be presented in pseudo code as follows. 
 

Calculation of the log likelihood function  

 

1. Input 0 0( ,H )  

2. for t=1 to T do 
3. KF predictions (19) 
4. KF update (20) 
5. Calculate a term of the log likelihood function (21) 
6. end for 
8. Compute ( ,H)O   (21) 

9. Output ( ,H)O   

 
 

Optimization of the log likelihood function  
 

The 2-phase optimization algorithm is the following. 
 
1. Initialize parameters ( ,H) from previous EM algorithm step                

2. while 1( ,H)O tolerance    do 

3. DIRECT optimization of ( ,H)O  with H fixed 

4. DIRECT optimization step of ( ,H)O  with   fixed 

5. end while 

6. while 2( ,H)O tolerance    do 

7. Powell optimization of ( ,H)O  with H fixed 

8. Powell optimization of ( ,H)O  with  fixed 

9. end while 

 


