REAL TIME COUNTERPARTY CREDIT RISK MANAGEMENT WITH ADJOINT ALGORITHMIC DIFFERENTIATION (AAD)

Luca Capriotti
Quantitative Strategies
Credit Suisse - Investment Banking Division

New Thinking in Finance
EU Conference on High Performance Computing, February 12-14, 2014
Disclaimer

This material has been prepared by the Quantitative Strategy Group ("Quant Strategists") which is part of the institutional trading desk of Credit Suisse and/or its affiliates (collectively "CS"). Quant Strategists are not part of the Research Department and the written materials disseminated by Quant Strategists are not research reports. The views of CS' Quant Strategists may differ materially from the views of the Research Department and other divisions at CS. CS has a number of policies in place designed to ensure the independence of CS' Research Department from CS' Trading Desks, including policies relating to the front-running of research reports. These policies do not apply to the materials provided by Quant Strategists. This material may have previously been communicated to the CS trading desk or other CS clients. You should assume that the CS' trading desk makes markets and/or currently maintains positions in the securities (or related securities) or derivatives thereof that are the subject of these materials, and such positions may be inconsistent with the materials provided by Quant Strategists.

This material is being provided to you solely for information purposes, is intended for your use and does not constitute an offer or commitment, a solicitation of an offer or commitment, or any advice or recommendation to enter into a transaction (whether on the indicative terms or any other). This has been prepared based on assumptions and parameters determined in good faith. Calculations in these materials may reflect CS's theoretical (i.e., model) prices only and may not take into account other potentially significant factors. It is important that you (recipient) understand that those assumptions and parameters are not the only ones that might have reasonably been selected or that could apply in the preparation of these materials or in an assessment of any transaction. A variety of other assumptions or parameters, or other market factors or conditions, could result in different contemporaneous good faith analysis or assessment of a transaction. Past performance should not be taken as an indication or guarantee of future performance, and no warranty or representation, expressed or implied is made regarding future performance. Opinions and estimates may be changed without notice. The information set forth above has been obtained from or based upon sources believed by CS to be reliable, but CS does not represent or warrant its accuracy or completeness. This material does not purport to contain all of the information that an interested party may desire. In all cases, interested parties should conduct their own investigation and analysis of the data set forth in these materials. Each person receiving these materials should make an independent assessment of the merits of pursuing a transaction described in these materials and should consult their own professional advisors. CS may from time to time, participate or invest in other financing transactions with the issuers of securities referred to herein, perform services for or solicit business from such issuers, and/or have a position or effect transactions in the securities of derivatives thereof. The market value of any security may be affected by changes in economic, financial, and political factors (including, but not limited to, spot and forward interest and exchange rates), time to maturity, market conditions and volatility and the credit quality of any issuer or reference issuer. Any investor interested in purchasing a product should conduct its own investigation and analysis of the product and consult with its own professional advisors as to the risk involved in making such a purchase.

CS is not qualified to give tax or accounting advice. This document is not to be relied upon in substitution for the exercise of independent judgment and for consultation of an external tax or accounting advisor. CS may have issued other documents that are inconsistent with, and reach different conclusions from, the information presented in this document. Those documents may reflect different assumptions, views and analytical methods of the analysts who prepared them. This document may not be reproduced in whole or in part or made available without the written consent of CS. The distribution of this information may be restricted by local law or regulation in certain jurisdictions.

CS may provide various services to US municipal entities or obligated persons ("municipalities"), including suggesting individual transactions or trades and entering into such transactions. Any services CS provides to municipalities are not viewed as "advice" within the meaning of Section 975 of the Dodd-Frank Wall Street Reform and Consumer Protection Act. CS is providing any such services and related information solely on an arm's length basis and not as an advisor or fiduciary to the municipality. In connection with the provision of the any such services, there is no agreement, direct or indirect, between any municipality (including the officials, management, employees or agents thereof) and CS for CS to provide advice to the municipality. Municipalities should consult with their financial, accounting and legal advisors regarding any such services provided by CS. In addition, CS is not acting for direct or indirect compensation to solicit the municipality on behalf of an unaffiliated broker, dealer, municipal securities dealer, municipal advisor, or investment adviser for the purpose of obtaining or retaining an engagement by the municipality for or in connection with Municipal Financial Products, the issuance of municipal securities, or of an investment adviser to provide investment advisory services to or on behalf of the municipality.
Outline

- The Problem:
 Real Time Counterparty Credit Risk Management

- The Solution:
 Adjoint Algorithmic Differentiation (AAD)
 - Pathwise Derivative Method
 - Algebraic Adjoint Approaches
 - Adjoint Algorithmic Differentiation (AAD)
 - AAD and the Pathwise Derivative Method: Adjoints made easy

- The Benefits
 - All the risk you want in 4x the cost of computing the portfolio
 - 100x speed ups

- Conclusions
Real Time Counterparty Risk Management in Monte Carlo

What is hard about it:

- **CVA/DVA are exotic derivative-like exposures**
 - Non Linear and Path Dependent Problem

- **Portfolio Problem: extreme high dimensionality**
 - All the trades facing a given counterparty that can be netted against each other (netting sets) need to be valued simultaneously.
 - Netting sets typically include trades from different asset classes with hundreds of Risk Factors.

- **Monte Carlo Problem**
 - Computing risk by means of traditional methods is challenging to do even overnight.
 - Pre Trade assessment of CVA/DVA is vital to run businesses efficiently
The Solution: Adjoint Algorithmic Differentiation (AAD)

- AAD is the only numerical technique that allows us to cope with the huge amount of sensitivities that arise in portfolio problems.

- All sensitivities are available at little more cost than computing the portfolio PV: a nearly impossible Risk calculation task become achievable.

- 2012: AAD goes mainstream:

 See e.g.

Setting up a CCRM engine:

- **Usual time discretization**:

 \[
 V_{\text{CVA}} \simeq \sum_{i=1}^{N_O} \mathbb{E} \left[\mathbb{I}(T_{i-1} < \tau_c \leq T_i) D(0, T_i) \right. \\
 \times \left. L_{\text{GD}}(T_i) \left(NPV(T_i) - C \left(R(T_i^-) \right) \right)^+ \right]
 \]

- **Problem formulation**:

 \[
 V = \mathbb{E}_Q \left[P(R, X) \right]
 \]

- **Payout**:

 \[
 P = \sum_{i=1}^{N_O} P \left(T_i, R(T_i), X(T_i) \right)
 \]
Quantitative Strategies

§ Monte Carlo Expectation Values

\[V(\theta) = \mathbb{E}_Q \left[P(X(T_1), \ldots, X(T_M)) \right] \]

... and sensitivities

\[\frac{\partial V(\theta)}{\partial \theta_k} = \mathbb{E}_Q \left[\frac{\partial P(X(\theta))}{\partial \theta_k} \right] \]

§ Pathwise Derivative Estimator

\[\bar{\theta}_k \equiv \frac{\partial P(X(\theta))}{\partial \theta_k} = \sum_{j=1}^{N \times M} \frac{\partial P(X)}{\partial X_j} \times \frac{\partial X_j(\theta)}{\partial \theta_k} \]

Payout Derivatives

Tangent Process

Lipschitz

Chain Rule

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Pathwise Derivative Method: Challenges

\[\bar{\theta}_k \equiv \frac{\partial P(X(\theta))}{\partial \theta_k} = \sum_{j=1}^{N \times M} \frac{\partial P(X)}{\partial X_j} \times \frac{\partial X_j(\theta)}{\partial \theta_k} \]

Since the variance of the estimator is comparable to the one of finite differences, all this is worth the hassle if the resulting computational time is significantly lower than the one of Bumping.

We need an efficient way to calculate:

1. Simulation of the Tangent Process
2. Derivatives of the Payout
“Algebraic” Adjoint Methods

Giles and Glasserman’s `Smoking Adjoints’, Risk Magazine 2006
Leclerc et al., Risk Magazine 2009
Joshi et al., several preprints

Libor Market Model & Swaptions
Concentrate on the efficient Simulation of the Tangent Process

In a nutshell:

1. Formulate the propagation of the Tangent process in terms of Linear Algebra Ops
2. Optimize the computation time by rearranging the order of the computations
3. Implement the rearranged sequence of operations
Algebraic Adjoint Methods: Libor Market Model

Log Euler scheme:

\[
\frac{L_i(n+1)}{L_i(n)} = \exp \left[(\mu_i(L(n)) - \|\sigma_i(n)\|^2/2) h_e + \sigma_i^T(n)Z(n+1)\sqrt{h_e} \right]
\]

\[
\mu_i(L(t)) = \sum_{j=\eta(t)}^{i} \frac{\sigma_i^T \sigma_j hL_j(t)}{1 + hL_j(t)}
\]

Delta tangent process:

\[
\Delta_{i,k}(t) = \frac{\partial L_i(t)}{\partial L_k(0)}
\]

\[
\Delta_{i,k}(n+1) = \Delta_{i,k}(n) \frac{L_i(n+1)}{L_i(n)} + L_i(n+1) \sum_{j=1}^{N} \frac{\partial \mu_i(n)}{\partial L_j(n)} \Delta_{j,k}(n) h
\]

Matrix Recursion:

\[
\Delta(n+1) = D(n)\Delta(n) \quad \Delta(0) = I
\]

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Algebraic Adjoint Methods

\[\bar{\theta} = \frac{\partial P(L(N))}{\partial L(N)}^T \Delta(N) \]

Tangent Process

Matrix Recursion

\[\Delta(n + 1) = D(n)\Delta(n) \quad \Delta(0) = I \]

Matrix Matrix Forward Recursion

\[O(N^3) \]

\[\bar{\theta} = \frac{\partial P(L(N))}{\partial L(N)}^T D(N - 1) \ldots D(0)\Delta(0) \]

Matrix Vector Backward Recursion

\[O(N^2) \]

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Algebraic Adjoint Methods

Arbitrary number of sensitivities at a **fixed small cost**

Giles and Glasserman, Risk Magazine 2006

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Limitations of Algebraic Adjoint Methods

- LMM is bit of an ad-hoc application ...
 - Difficult to generalize to Path Dependent Options
 - The required Algebraic Analysis is in general cumbersome
 - Not general enough for all the applications in Finance
 - The derivatives required are often not available in closed form
 - What about the derivatives of the Payout?
Algorithmic Adjoint Approaches: AAD

- Adjoint implementations can be seen as instances of a programming technique known as Adjoint Algorithmic Differentiation (AAD).

- In general, AAD allows the calculation of the gradient of an algorithm at a cost that is a small constant (~4) times the cost of evaluating the function itself, independent of the number of input variables.

The Payoff estimator is a mapping of the form:

$$\theta \rightarrow P(X(\theta))$$

AAD gives all the Risk estimators for a small fixed cost:

$$\bar{\theta}_k \equiv \frac{\partial P(X(\theta))}{\partial \theta_k}$$
How does AAD work anyway?

$$Y = \text{FUNCTION}(X)$$

$$X \rightarrow \ldots \rightarrow U \rightarrow V \rightarrow \ldots \rightarrow Y$$

Adjoints

$$\bar{V}_k = \sum_{j=1}^{m} \bar{Y}_j \frac{\partial Y_j}{\partial V_k}$$

Propagation Rule

$$\bar{U}_i = \sum_k \bar{V}_k \frac{\partial V_k}{\partial U_i}$$

$$\bar{X} \leftarrow \ldots \leftarrow \bar{U} \leftarrow \bar{V} \leftarrow \ldots \leftarrow \bar{Y}$$

$$\bar{X} = \text{FUNCTION}_B(X, \bar{Y})$$

Main Result

$$\bar{X}_i = \sum_{j=1}^{m} \bar{Y}_j \frac{\partial Y_j}{\partial X_i}$$

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Computational Cost:

Main Result of AAD:

\[Y = \text{FUNCTION}(X) \]

\[\bar{X} = \text{FUNCTION}_B(X, \bar{Y}) \]

\[\bar{X}_i = \sum_{j=1}^{m} \bar{Y}_j \frac{\partial Y_j}{\partial X_i} \]

\[\frac{\text{Cost}[\text{FUNCTION}_B]}{\text{Cost}[\text{FUNCTION}]} \leq \omega_A \]

\[\omega_A \sim 4 \]
Simple Example:

\[
(P) = \text{payout} (r, X[N]) \{ \\
B = 0.0; \\
\text{for} (i = 1 \text{ to } N) \\
\quad B += w[i] \times X[i]; \\
x = B - K; \\
D = \exp(-r \times T); \\
P = D \times \max(x, 0.0); \\
\}
\]

\[
B = \sum_{i=1}^{N} w_i X_i \\
x = B - K \\
D = \exp(-rT) \\
P = D \max(x, 0)
\]

\[
P = \exp(-rT) \max \left(\sum_{i=1}^{N} w_i X_i - K, 0 \right)
\]

\[
(P, r_b, X_b[N]) = \text{payout}_b(r, X[N], P_b)\{

 B = 0.0;
 \text{for (} i = 0 \text{ to } N \text{)}
 \quad B += w[i] \times X[i];

 x = B - K;
 D = \exp(-r \times T);
 P = D \times \max(x, 0.0);

 D_b = \max(x, 0.0) \times P_b;

 x_b = 0.0;
 \text{if (} x > 0 \text{)}
 \quad x_b = D \times P_b;

 r_b = -D \times T \times D_b;
 B_b = x_b;

 \text{for (} i = 0 \text{ to } N \text{)}
 \quad X_b[i] = w[i] \times B_b;
\}

// Forward sweep
\[
B = \sum_{i=1}^{N} w_i X_i
\]
\[
x = B - K
\]
\[
D = \exp(-r T)
\]
\[
P = D \max(x, 0)
\]

// Backward sweep
\[
\bar{D} = \bar{P} \partial P / \partial D = \bar{P} \max(x, 0)
\]
\[
\bar{x} = \bar{P} \partial P / \partial x = \bar{P} D \theta(x)
\]
\[
\bar{r} = \bar{D} \partial D / \partial r = \bar{D}(-D T)
\]
\[
\bar{B} = \bar{x} \partial x / \partial B = \bar{x}
\]
\[
\bar{X}_i = \bar{B} \partial B / \partial X_i = \bar{B} w_i
\]

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
AAD as a Design Paradigm

- AAD can be used as a **design paradigm** even for large inhomogeneous algorithms

- Addresses both aspects of the implementation of the Pathwise Derivative Method

\[
\frac{\partial P(X)}{\partial X_j} \quad \frac{\partial X_j(\theta)}{\partial \theta_k}
\]

\[
\bar{\theta}_k \equiv \frac{\partial P(X(\theta))}{\partial \theta_k} = \sum_{j=1}^{N \times M} \frac{\partial P(X)}{\partial X_j} \times \frac{\partial X_j(\theta)}{\partial \theta_k}
\]

- Linear combination of the rows of the Jacobian

- All the Greeks at a cost that is a small (~4) multiple of the PV estimator

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Diffusive Setting

\[P_0(X) \]

\[\theta \]

\[X(T_1) \ldots X(T_M) \]

\[X(t_{N_s}) \]

\[\theta \]

\[\{X(t_m)\}_{m \leq N_s - 1} \]

\[\ldots \]

\[X(t_2) \]

\[\theta \]

\[\text{PROP}_{N_s - 1} \]

\[\theta \]

\[X(t_1) \]

\[\theta \]

\[\text{PROP}_1 \]

\[\theta \]

\[\text{PROP}_C \]

\[\theta \]

\[\text{Forward} \]

\[\theta \]

\[\text{Backward} \]
Lognormal Example

\[X(t_{n+1}) = \text{PROP}_n(X(t_n), \theta) \]

- **Step 1**
 \[\mu = rX(t_n) \]

- **Step 2**
 \[\Sigma = \sigma X(t_n) \]

- **Step 3**
 \[X(t_{n+1}) = X(t_n) + \mu \Delta t + \Sigma \sqrt{\Delta t} \]

\[(\bar{X}(t_n), \bar{\theta}) = \text{PROP}_n(., \bar{X}(t_{n+1})) \]

- **Step \bar{1}**
 \[\bar{X}(t_n) + = \bar{\mu} r \quad \bar{\theta}_r + = \bar{\mu} X(t_n) \]

- **Step \bar{2}**
 \[\bar{X}(t_n) + = \bar{\Sigma} \sigma \quad \bar{\theta}_\sigma + = \bar{\Sigma} X(t_n) \]

- **Step \bar{3}**
 \[\bar{\mu} = \bar{X}(t_{n+1}) \Delta t \]
 \[\bar{\Sigma} = \bar{X}(t_{n+1}) \sqrt{\Delta t} Z \]
 \[\bar{X}(t_n) = \bar{X}(t_{n+1}) \]

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Best of Asian Option

- Full Delta and Vega calculation for just twice the cost to calculate the PV

L.C. & Mike Giles, Risk (2012)
Back to the LMM test ground

- Full Delta and Vega calculation for just twice the cost to calculate the PV
- Similar results for both Euler and predictor corrector discretizations
- 100x savings in typical applications

L.C. & Mike Giles, Risk (2012)

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Real Time Counterparty Risk Management in Monte Carlo

- **CVA Problem:**

 \[
 V_{CVA} = \mathbb{E}\left[\mathbb{I}(\tau_c \leq T) D(0, \tau_c) \times \frac{L_{GD}(\tau_c)}{\tau_c} \right. \\
 \left. \left(\text{NPV}(\tau_c) - C(R(\tau_c^-)) \right)^+ \right]
 \]

- Risk manage CVA/DVA is challenging because all the trades facing the same counterparty must be valued at the same time, typically with Monte Carlo.

- AAD is naturally suited for this task.

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
A new challenge: Rating Dependent Payoffs

\[P(T_i, R(T_i), X(T_i)) = \sum_{r=0}^{N_R} \tilde{P}_i(X(T_i); r) \delta_{r, R(T_i)} \]

Rating Transition Markov Chain model (Jarrow, Lando and Turnbull ‘97)

\[R(T_i) = \sum_{r=1}^{N_R} \mathbb{I}(\tilde{Z}_i^R > Q(T_i, r)) \]

The Rating state space is discrete (hence the Payoff is non Lipschitz)

The Pathwise Derivative method gives only part of the Risk
Real Time Counterparty Risk Management in Monte Carlo

- Payout rewrite:

\[P(T_i, R(T_i), X(T_i)) = \sum_{r=0}^{N_R} \tilde{P}_i(X(T_i); r) \delta_{r,R(T_i)} \]

\[P(T_i, \tilde{Z}_i^R, X(T_i)) = \tilde{P}_i(X(T_i); 0) + \sum_{r=1}^{N_R} \left(\tilde{P}_i(X(T_i); r) - \tilde{P}_i(X(T_i); r-1) \right) I \left(\tilde{Z}_i^R > Q(T_i, r; \theta) \right) \]

Singular Contribution:

\[\partial_{\theta_k} P(T_i, \tilde{Z}_i, X(T_i)) = - \sum_{r=1}^{N_R} \left(\tilde{P}_i(X(T_i); r) - \tilde{P}_i(X(T_i); r-1) \right) \delta \left(\tilde{Z}_i^R = Q(T_i, r; \theta) \right) \partial_{\theta_k} Q(T_i, r; \theta) \]

This cannot be sampled by MC
Real Time Counterparty Risk Management in Monte Carlo

Singular Contribution:

\[\partial_{\theta_k} P(T_i, \tilde{Z}_i, X(T_i)) = - \sum_{r=1}^{N_R} \left(\tilde{P}_i(\tilde{Z}_i; r) - \tilde{P}_i(\tilde{Z}_i; r - 1) \right) \delta \left(\tilde{Z}_i^R = Q(T_i, r; \theta) \right) \partial_{\theta_k} Q(T_i, r; \theta) \]

Can be integrated out analytically

\[\bar{\partial}_k = - \sum_{r=1}^{N_R} \frac{\phi(Z^*, Z_i^X, \rho_i)}{\sqrt{i} \phi(Z_i^X, \rho_i^X)} \partial_{\theta_k} Q(T_i, r; \theta) \times \left(\tilde{P}_i(X(T_i); r) - \tilde{P}_i(X(T_i); r - 1) \right) \]

Variance Reduction vs. Bumping:

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>VR[Q(1,1)]</th>
<th>VR[Q(1,2)]</th>
<th>VR[Q(1,3)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>24</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>0.01</td>
<td>245</td>
<td>165</td>
<td>125</td>
</tr>
<tr>
<td>0.001</td>
<td>2490</td>
<td>1640</td>
<td>1350</td>
</tr>
</tbody>
</table>

Real time counterparty credit risk management with Adjoint Algorithmic Differentiation (AAD)
Real Time Counterparty Risk Management in Monte Carlo

- Calculation of risk for the CVA of a portfolio of commodity swaps

\[
\frac{dF_T(t)}{F_T(t)} = \sigma_T \exp(-\beta(T - t))dW_t
\]

1-factor lognormal model of the Futures curve

Conditional value of the commodity swap:

\[
NPV(t) = \sum_{j=1}^{N_e} D(t, t_j) \left(F_{t_j}(t) - K \right)
\]
Real Time Counterparty Risk Management in Monte Carlo

- **Forward Propagation:**

 \[F_T(T_i) = F_T(T_{i-1}) \exp \left(\sigma_i \sqrt{\Delta T_i} Z - \frac{1}{2} \sigma_i^2 \Delta T_i \right) \]

 \[\sigma_i^2 = \frac{\sigma_T^2}{2\beta \Delta T_i} e^{-2\beta T} \left(e^{2\beta T_i} - e^{2\beta T_{i-1}} \right) \]

- **Adjoint Propagation:**

 \[\bar{F}_T(T_{i-1}) = \bar{F}_T(T_i) \exp \left(\sigma_i \sqrt{\Delta T_i} Z - \frac{1}{2} \sigma_i^2 \Delta T_i \right) \]

 \[\bar{\sigma}_i = \bar{F}_T(T_i) F(T_i) \left(\sqrt{\Delta T_i} Z - \sigma_i \Delta T_i \right) \]

 \[\bar{\sigma}_T = \frac{\bar{\sigma}_i}{\sqrt{2\beta \Delta T_i}} \sqrt{e^{-2\beta T} \left(e^{2\beta T_i} - e^{2\beta T_{i-1}} \right)} \]
Real Time Counterparty Risk Management in Monte Carlo

- Test Application: Calculation of risk for the CVA of a portfolio of 5 commodity swaps over a 5 years horizon (over 600 risks)

- Bumping: \(~ 1h 40\) min
- AAD: \(~ 10\) sec

L.C., J. Lee and M. Peacock, Risk (2011)
Conclusions

▪ Algebraic Adjoint approaches can be seen as specific instances of a more general paradigm: Adjoint Algorithmic Differentiation (AAD)

▪ AAD can be employed to evaluate efficiently option sensitivities for virtually any model and financial security encountered in practice

▪ AAD allows the calculation of the Greeks in at most 4 times the time necessary for the calculation of the P&L of the portfolio

▪ Risk is calculated orders of magnitude faster than standard bumping, thus producing a significant reduction in infrastructure costs, and allowing “real time” monitoring of Risk and more effective hedging strategies

▪ Real Time CCRM:
 ▪ Analytical Integration of the Rating Singular Contribution
 ▪ Additional significant Speed Up coming from Variance Reduction
References

Also available at www.luca-capriotti.net or ssrn

The opinion and views expressed are uniquely those of the author and do not necessarily represent those of Credit Suisse.