Pricing of Contracts:
-Numerical Solutions of Backward SDEs-
-Modeling Volatility Risk Premium-

Kossi K. Gnameho

Jointed work with Prof. Mitja S. & Prof. Pelsser Antoon

HPC Finance Project, London (UK)

15 March 2016
Outline

1. Numerical Solution of Backward SDEs: Regression Later Algorithm, *SIAM Journal of Mathematical Finance (Submission)*.
Simple Example

\[(Market)\] \[\begin{align*}
 dS^0_t &= rS^0_t dt; \quad S^0_0 = 1 \quad \text{(Riskless Asset)} \\
 dS_t &= S_t \mu dt + S_t \sigma dW_t, \quad S^0_0 = x \quad \text{(Risky Asset)}
\end{align*}\]

At \(t \in [0, T]\), we build the self-financing portfolio \(Y\)

\[Y_t = \Delta_t S_t + \beta_t S^0_t\]

By the self-financing condition, \(dY_t = \Delta_t dS_t + \beta_t dS^0_t\)

\[dY_t = S_t \Delta_t (\mu dt + \sigma dW_t) + \beta_t dS^0_t\]

With \(\theta = [\mu - r]\sigma^{-1}\) and \(Z_t = \sigma \Delta_t S_t\), the couple \((Y_t, Z_t)\) solves:

\[-dY_t = f(t, S_t, Y_t, Z_t)dt - Z_t dW_t, \quad Y_T = \phi(S_T)\]

\[
\text{Call} \begin{cases}
\phi(x) = (x - K)^+ \\
\phi(t, x, y, z) = -(ry + \theta z)
\end{cases}
\]
We consider the system (S)

\[
\begin{aligned}
X_t &= x + \int_0^t b(s, X_s)ds + \int_0^t \sigma(s, X_s)dW_r, \\
Y_t &= \Phi(X_T) + \int_t^T f(s, X_s, Y_s, Z_s)ds - \int_t^T Z_s dW_s.
\end{aligned}
\]

'\mathcal{L}' is the differential generator defined by

\[
\forall \phi \in C^{1,2}([0, T] \times \mathbb{R}^d) \quad \mathcal{L}\phi =: b.\nabla \phi + \frac{1}{2} \text{Trace}(A.\nabla^2 \phi)
\]

\[A = \sigma \sigma^*\]
Let us consider $u \in C^{1,2}([0, T] \times \mathbb{R}^d)$ a solution of (1). Suppose that there exist two positive constants C and q such that:

$$
|u(t, x)| + |(\nabla_x u)(t, x)| \leq C(1 + |x|^q)
$$

\(\left\{
\begin{aligned}
\frac{\partial u}{\partial t}(t, x) + \mathcal{L}u(t, x) + f(t, x, u(t, x), \nabla u\sigma(t, x)) &= 0 \\
u(T, x) &= \Phi(x), \quad \text{with} \quad (t, x) \in [0, T] \times \mathbb{R}^d
\end{aligned}\right.\) (1)

Theorem (Pardoux and Peng)

$$
\forall t \in [0, T], \quad Y_t = u(t, X_t) \quad \text{and} \quad Z_t = \nabla_x u(t, X_t)\sigma(t, X_t).
$$
Linear BSDEs

\((\varphi_t)_{0 \leq t \leq T} \in \mathcal{H}^2(\mathbb{R}), \ (\beta_t)_{0 \leq t \leq T} \in \mathbb{R}, \ (\gamma_t)_{0 \leq t \leq T} \in \mathbb{R}^d \) m.p.
and uniformly bounded

\[
\begin{aligned}
-dY_t &= (\varphi_t + \beta_t Y_t + \gamma_t Z_t)dt - Z_t dW_t. \\
Y_T &= \xi
\end{aligned}
\] (1)

\[\exists \! (Y_t, Z_t) \in S^2(\mathbb{R}) \times \mathcal{H}^2(\mathbb{R}^d)\]

\[H_t Y_t = \mathbb{E}[H_T \xi + \int_t^T H_s \varphi_s ds | \mathcal{F}_t].\]

\[
\begin{aligned}
dH_t &= H_t(\beta_t dt + \gamma_t dW_t), \\
H_0 &= 1
\end{aligned}
\] (2)
Euler Maruyama Scheme

Consider the subdivision π of $[0, T]$, $0 = t_0 < t_1 < \ldots < t_N = T$,

- $\Delta_i := t_{i+1} - t_i$,

 $\Delta W_{t_i} := W_{t_{i+1}} - W_{t_i}$, $|\pi| = \max\{\Delta_i; 0 \leq i \leq N - 1\}$.

- $(X^\pi, Y^\pi, Z^\pi) \approx (X, Y, Z)$

\[
Y_{t_i} = Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, X_s, Y_s, Z_s) ds - \int_{t_i}^{t_{i+1}} Z_s dW_s
\]

The Euler approximation of the previous stochastic integral is:

\[
Y_{t_i}^\pi = Y_{t_{i+1}}^\pi + f(t_i, X_{t_i}^\pi, Y_{t_i}^\pi, Z_{t_i}^\pi) \Delta_i - Z_{t_i}^\pi \Delta W_{t_i}
\]
Euler-Maruyama Scheme (Gobet et al.)

For $0 \leq i \leq N$

\[
\begin{aligned}
SDE \quad \left\{
\begin{align*}
X_0^\pi &= x \\
X_{t_{i+1}}^\pi &= X_{t_i}^\pi + \Delta_i b(t_i, X_{t_i}^\pi) + \sigma(t_i, X_{t_i}^\pi)(W_{t_{i+1}} - W_{t_i})
\end{align*}
\right.
\end{aligned}
\]

\[
\begin{aligned}
BSDE \quad \left\{
\begin{align*}
Y_T^\pi &= \phi(X_T^\pi) \\
Z_{t_i}^\pi &= \frac{1}{\Delta_i} \mathbb{E}[Y_{t_{i+1}}^\pi \Delta W_{t_i} | \mathcal{F}_{t_i}] = \frac{1}{\Delta_i} \mathbb{E}[Y_{t_{i+1}}^\pi (W_{t_{i+1}} - W_{t_i}) | \mathcal{F}_{t_i}] \\
Y_{t_i}^\pi &= \mathbb{E}[Y_{t_{i+1}}^\pi | \mathcal{F}_{t_i}] + \Delta_i f(t_i, X_{t_i}^\pi, Y_{t_i}^\pi, Z_{t_i}^\pi)
\end{align*}
\right.
\end{aligned}
\]
Error Estimation

Theorem (Gobet E., J.P. Lemor and X. Warin)

\[
\begin{cases}
1) & x \mapsto b(t,x), \sigma(t,x), \text{ uniformly Lipschitz, } \phi \text{ Lipschitz } \\
2) & f \text{ Lipschitz in } y, z \text{ and } \frac{1}{2} - \text{ Hölderian in } t
\end{cases}
\]

then with \(\Delta Y_{t_i} = Y_{t_i} - Y_{t_i}^\pi \), \(\Delta Z_t^\pi = Z_t - Z_{t_i}^\pi \)

\[
\max_{0 \leq i < N} \mathbb{E} \left[|\Delta Y_{t_i}^\pi|^2 \right] + \mathbb{E} \left[\sum_{i=0}^{N-1} \int_{t_i}^{t_i+1} |\Delta Z_t^\pi|^2 \, dt \right] \\
\leq C \left[(1 + |x|^2) \Delta_i + \mathbb{E}[\phi(X_T) - \phi(X_N^\pi)]^2 \right]
\]
Hypothesis (H)

\[
\begin{align*}
(H1) \quad & (t, x) \mapsto b(t, x), \sigma(t, x) \text{ are Lipschitz in } x \\
& \text{ uniformly in } t \text{ and: } |b(t, x)| + |\sigma(t, x)| \leq K(1 + |x|) \\
(H2) \quad & \text{There exists a positive constant } K > 0, \text{ s.t. } \\
& |f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2)| \leq K(|y_1 - y_2| + |z_1 - z_2|), \forall (x_i, y_i, z_i)_{i=1,2} \\
(H3) \quad & \text{There exists } k_\sigma, K_\sigma > 0 \text{ such that } \forall t \in [0, T], \forall x, \zeta \in \mathbb{R}^m \\
& k_\sigma |\zeta|^2 \leq \sum_{i,j} [\sigma \sigma^*]_{i,j}(t, x) \zeta_i \zeta_j \leq K_\sigma |\zeta|^2
\end{align*}
\]
Hypothesis (G)

\[
\begin{cases}
(G1) \quad \sup_{t \in [0, T]} |f(t, 0, 0, 0)| \leq K \\
(G2) \quad x \mapsto \phi(x) \in C^2(\mathbb{R}^m, \mathbb{R}) \quad \text{and Lipshitz in } x \\
(G3) \quad f : [0, T] \times \mathbb{R}^m \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R} \text{ is continuously differentiable in } (x, y, z) \text{ with uniformly bounded derivatives} \\
(G4) \quad b \in C_b^{0,2}([0, T] \times \mathbb{R}^m, \mathbb{R}^m), \sigma \in C_b^{0,2}([0, T] \times \mathbb{R}^m, \mathbb{R}^{m \times d})
\end{cases}
\]
We built the Dynamic Programing Problem (DPP)

\[\begin{align*}
Y^\pi_N &= \phi(X^\pi_T), \\
Z^\pi_N &= \sigma(T, X^\pi_T)(\nabla_x \phi)(X^\pi_T), \\
Y^\pi_{t_i} &= \mathbb{E}[Y^\pi_{t_{i+1}} | \mathcal{F}_{t_i}] + \Delta_i \mathbb{E}[f(t_{i+1}, X^\pi_{t_{i+1}}, Y^\pi_{t_{i+1}}, Z^\pi_{t_{i+1}}) | \mathcal{F}_{t_i}], \quad 0 \leq i \leq N - 1 \\
Z^\pi_{t_i} &= \sigma(t_i, X^\pi_{t_i}) \nabla_x Y^\pi_{t_i} \text{ with } \Delta_i := t_{i+1} - t_i, \quad 0 \leq i \leq N - 1.
\end{align*} \]
Convergence Results

Proposition

Under the hypotheses \((G) + (H)\), there exist two positive constant \(C_1, C_2\) independent of the partition \(\pi\) such that:

\[
\max_{0 \leq i < N} \mathbb{E} \left| Y_{t_i} - Y_{t_i}^{\pi} \right|^2 + \mathbb{E} \sum_{i=0}^{N-1} \int_{t_i}^{t_i+1} \left| Z_s - Z_{t_i}^{\pi} \right|^2 ds \leq C_1 (1 + |x|^2) |\pi| \\
+ C_1 \mathbb{E} \left| \phi(X_T) - \phi(X_T^{\pi}) \right|^2
\]
Theorem (J. Zhang’s L^2-regularity)

Let π be any partition of $[0, T]$. Under some hypotheses and assume that $(Z_s)_{0 \leq s \leq T}$ is a càdlàg process, there is a positive constant $C_{T,K} > 0$ independent of π such that:

$$\sum_{i=0}^{N-1} \mathbb{E} \int_{t_i}^{t_{i+1}} |Z_s - Z_{t_i}|^2 + |Z_s - Z_{t_{i+1}}|^2 ds \leq C_{T,K}(1 + |x|^2)$$
Remark

For $|\pi|$ small enough, the function

$$x \mapsto u_{t_i}^{\pi}(x)$$

is Lipschitz

$$Y_{t_i}^{\pi} = u_{t_i}^{\pi}(X_{t_i}^{\pi}), \quad t_i \in \pi$$

The Euler approximation

$$Y_{t_i}^{\pi} = \mathbb{E} \left(Y_{t_{i+1}}^{\pi} + \Delta_i f(t_{i+1}, X_{t_{i+1}}^{\pi}, Y_{t_{i+1}}^{\pi}, Z_{t_{i+1}}^{\pi}) | \mathcal{F}_{t_i} \right).$$

$$X_s^{\pi} = X_{t_i}^{\pi} + \int_{t_i}^s b(t_i, X_{t_i}^{\pi}) du + \int_{t_i}^s \sigma(t_i, X_{t_i}^{\pi}) dW_u, \quad \text{with } s \in [t_i, t_{i+1}]. \quad (3)$$

By the Martingale Representation Theorem

$$Y_t^{\pi} = Y_{t_{i+1}}^{\pi} + \int_t^{t_{i+1}} f(t_{i+1}, X_{t_{i+1}}^{\pi}, Y_{t_{i+1}}^{\pi}, Z_{t_{i+1}}^{\pi}) ds - \int_t^{t_{i+1}} \tilde{Z}_s^{\pi} dW_s,$$
Lipschitz By backward induction

- Forward $X^{\pi,i}$ with initial conditions x_i, $(i = 1, 2)$
- $(Y^{\pi,x_i}, \bar{Z}^{\pi,x_i}), i = 1, 2$ (where $Y^\pi_t, x_i = u^\pi_t (X^\pi_t, i)$)

By Itô,

$$
\mathbb{E}\left| Y^\pi_t, x_1 - Y^\pi_t, x_2 \right|^2 + \mathbb{E} \int_t^{t+1} |\bar{Z}^\pi_s, x_1 - \bar{Z}^\pi_s, x_2|^2 \, ds = \mathbb{E}\left| Y^\pi_{t+1,1} - Y^\pi_{t+1,2} \right|^2 \\
+ 2\mathbb{E} \int_t^{t+1} (Y^\pi_s, x_1 - Y^\pi_s, x_2) \delta f^\pi_{t+1,1,2} \, ds.
$$

(4)

From $ab \leq \frac{1}{2\alpha} a^2 + \frac{1}{2} \alpha b^2$, $\alpha > 0$

$$
\mathbb{E}\left| \Delta Y^1,2_t \right|^2 + \mathbb{E} \int_t^{t+1} |\bar{Z}^\pi_s, x_1 - \bar{Z}^\pi_s, x_2|^2 \, ds \leq (1 + K \Delta_i \alpha) \mathbb{E}\left| \Delta Y^1,2_{t+1} \right|^2 \\
+ 2K \alpha \int_t^{t+1} \mathbb{E}\left| \Delta Y^1,2_s \right|^2 \, ds + \alpha K \Delta_i \mathbb{E}\left| Z^\pi_{t+1,1} - Z^\pi_{t+1,2} \right|^2.
$$

(5)
Lipschitz By backward induction

There exists c_i^1 and $c_i^2 > 0$ such that

$$
\mathbb{E} \int_{t_i}^{t_{i+1}} |Z_{t_{i+1}}^{\pi,x_1} - Z_{t_{i+1}}^{\pi,x_2}|^2 ds \leq c_i^1 (1 + |x_1|^2) |\pi|^2 + 3 \int_{t_i}^{t_{i+1}} \mathbb{E} |\bar{Z}_{s}^{\pi,x_1} - \bar{Z}_{s}^{\pi,x_2}|^2 ds \\
+ c_i^2 (1 + |x_2|^2) |\pi|^2.
$$

(6)

For $\alpha = \frac{1}{6K}$, $|\pi|$ small enough

$$
\mathbb{E} |\Delta Y_{t,i+1}^{1,2}|^2 + \frac{1}{2} \mathbb{E} \int_{t}^{t_{i+1}} |\bar{Z}_{s}^{\pi,x_1} - \bar{Z}_{s}^{\pi,x_2}|^2 ds \leq (1 + \frac{1}{6} \Delta_i) \mathbb{E} |\Delta Y_{t,i+1}^{1,2}|^2 \\
+ 12K^2 \int_{t}^{t_{i+1}} \mathbb{E} |\Delta Y_{s}^{1,2}|^2 ds.
$$

(7)

In particular

$$
\mathbb{E} |\Delta Y_{t}^{1,2}|^2 \leq (1 + \frac{1}{6} \Delta_i) \mathbb{E} |\Delta Y_{t_i+1}^{1,2}|^2 + 12K^2 \int_{t}^{t_{i+1}} \mathbb{E} |\Delta Y_{s}^{1,2}|^2 ds.
$$

(8)
Lipschitz By backward induction

\(u_{t_{i+1}}^\pi \) is Lipschitz with \(C_{i+1} \) its Lipschitz constant. We know

\[
\mathbb{E}|X_{t_{i+1}}^{\pi,x_1} - X_{t_{i+1}}^{\pi,x_2}|^2 \leq (1 + C \Delta_i)|x_1 - x_2|^2.
\]

Gronwall inequality to \(t \in [t_i, t_{i+1}) \mapsto \mathbb{E} |\Delta Y_t^{1,2}|^2 \)

\[
\mathbb{E} |\Delta Y_t^{1,2}|^2 \leq C_i^2 |x_1 - x_2|^2.
\]

where

\[
C_i^2 = (1 + \frac{1}{6} \Delta_i)(1 + C \Delta_i)C_{i+1}^2 \exp(12K^2 \Delta_i)
\]
Non Explosion

Lemma (Gronwall Inequality)

Consider the partition \(\pi : 0 = t_0 < ... < t_N = T \) of the interval \([0, T]\) and \(\Delta_i \) its mesh. Consider the two families \((a_k)_{0 \leq k \leq N}, (b_k)_{0 \leq k \leq N} \geq 0\), \(\gamma > 0 \) where \(a_{k-1} \leq (1 + \gamma \Delta_i) a_k + b_k \), \(k = 1, \ldots, N \). Then,

\[
\max_{0 \leq i \leq N} \ a_i \leq e^{\gamma T} (a_N + \sum_{i=1}^{N} b_i).
\]

By Gronwall inequality, we have

\[
\max_{0 \leq i \leq N} \ C_i^2 \leq e^{CT} (C_\phi^2 + CT) \Rightarrow x \mapsto u_{t_i}^\pi(x)
\]

is Lipschitz where \(C_\phi \) is the Lipschitz constant of the function \(Y_T \).
With $\theta = [\mu - r]\sigma^{-1}$ and $Z_t = \sigma \Delta_t S_t$, the couple (Y_t, Z_t) solves:

$$-dY_t = f(t, S_t, Y_t, Z_t)dt - Z_t dW_t,$$

$$Y_T = \phi(S_T)$$

Call $\left\{ \begin{align*}
\phi(x) &= (x - K)^+ \\
 f(t, x, y, z) &= -(ry + \theta z)
\end{align*} \right.$$

$T = 1$, $r = 1\%$, $x = 100$, $K = 100$, $\mu = 1\%$, $\sigma = 2\%$
Pricing Vanilla Options: Log-Error

\[k = 4, \ M = 10^4 \quad (Y_{t_0}, Z_{t_0}) = (1.3886, 1.39). \]

Figure: Log-Error curve to estimate \((Y_0, Z_0)\). European Call case
Log-Error Curve

\[k = 4, \ M = 10^4 \quad (Y_0, Z_0) = (0.39, -0.60) \]

Figure: Log-Error curve to estimate \((Y_0, Z_0)\). European Put
Brownian Functional Case

\[
\begin{align*}
- dY_t &= f(s, W_s, Y_s, Z_s) dt - Z_t dW_t, \quad 0 \leq t < T, \\
Y_T &= \phi(W_T), \\
\phi(x) &= x \arctan(x) - \ln(\sqrt{1 + x^2}) \\
f(t, W_t, Y_t, Z_t) &= -\frac{1}{2(1 + \tan^2(Z_t))}.
\end{align*}
\]

\[
(Y_t, Z_t) = (-\frac{1}{2} \ln(1 + W_t^2) + W_t \arctan(W_t), \arctan(W_t)) \quad a.s.
\]

- \(x \mapsto \ln(x)\) satisfies the linear growth condition
- \(x \mapsto \arctan(x)\) is bounded,

\[
(Y_t, Z_t)_{0 \leq t \leq T} \in S^2(\mathbb{R}) \times H^2(\mathbb{R}) \\
(Y_0, Z_0) = (0, 0).
\]
Log-Error Curve

\(k = 4, \ M = 10^4 \)

Figure: Log-Error curve to estimate \((Y_0, Z_0) = (0, 0)\)
Advantages
- Simple Algorithm,
- High dimension (Basket Options, Some Insurance contracts)
- Reflected BSDEs

Challenges & Perspectives
- Multi Level Monte Carlo
- Propagation Error
Modeling Volatility Risk Premium

Kossi K. Gnameho, Ye Yue & Prof. Juho Kanniainen

HPC Finance Project, London (UK)

Tampere University of Technology & Maastricht University

kossi.gnameho@gmail.com

15 March 2016
Outline

1. Introduction

2. Backward Representation

3. Application 1: Affine Case

4. Application 2: Non-Affine Case

5. Conclusion
The expression of the variance risk premium (VRP_t^T)

$$VRP_t^T = \mathbb{E}(RV_{t,T} | \mathcal{F}_t) - \mathbb{E}^*(RV_{t,T} | \mathcal{F}_t), \quad 0 \leq t \leq T$$

- $RV_{t,T}$: Realized variance of an asset S
- T: Fixed time horizon
- V: is the variance process S
Variance Swap and VRP

Variance Swap = Forward contract on realized variance (RV). With the maturity time \(T \), the payoff is

\[
(RV_{t,T} - K)N, \tag{1}
\]

where:
- the integer \(N \) denotes the notional
- \(K \) is called the fixed leg of the variance swap contract
- \(RV_{t,T} \) is the realized annualized variance of the underlying asset over the period \([t, T]\).

\[
RV_{t,T}^d = \frac{C_t}{m-1} \sum_{i=0}^{m-1} \left(\ln \left(\frac{S_{t_{i+1}}}{S_{t_i}} \right) \right)^2, \tag{2}
\]
Estimation of the VRP

The fair conditional variance strike $K_{t,T}$ is

$$K_{t,T} = \mathbb{E}^*(RV_{t,T} | \mathcal{F}_t) = \frac{1}{T-t} \mathbb{E}^*\left(\int_t^T V_s ds | \mathcal{F}_t \right)$$ (3)

The continuous time version of $RV = \text{the quadratic variation of } S_t$

$$K_{t,T} = \frac{2}{T-t} \int_0^\infty \frac{O_t(\kappa, T)}{\kappa^2 B_{t,T}^{1.\$}} d\kappa + \epsilon_t^T$$ (4)

- $B_{t,T}^{1.\$}$: Time $-t$ price of a Bond, ϵ_t^T is a Jump term
- $O_t(\kappa, T)$: Time $t-$ price of OTM vanilla options prices with characteristics (κ, T)
In continuous time framework, the variance risk premium (VRP^T_t) satisfies the equation

$$
\begin{cases}
 dY_t = \frac{1}{T-t} Y_t dt - Z_t dB_t, & 0 \leq t < T, \\
 Y_T = VRP^T_T = 0
\end{cases}
$$

where $Z_t = \frac{1}{T-t} \begin{pmatrix} \gamma_t \\ \gamma^*_t \end{pmatrix}$ and $B_t = \begin{pmatrix} W_t \\ W^*_t \end{pmatrix}$.
Vix, Variance Swap and VRP

Figure: Vix, Swap Rates, RV
The Model

$(V_t)_{0 \leq t \leq T}$ the adapted variance process of S

$$
\begin{cases}
 dV_t = \beta(V_t) dt + \sigma(V_t) dW_t, & 0 < t \leq T \\
 V_0 = v_0 > 0, \quad \beta(x) = b(x) - ax
\end{cases}
$$ (6)

$$
\begin{cases}
 dV_t = \beta^*(V_t) dt + \sigma^*(V_t) dW^*_t; & 0 < t \leq T \\
 V_0 = v_0 > 0, \quad \beta^*(x) = b^*(x) - a^*x
\end{cases}
$$ (7)

$(H) \left\{ b, b^* \sigma, \sigma^* \text{ are continuously differentiable with linear growth condition,} \right.$

V and V^* admit a unique Malliavin derivative.
Introduction

Backward Representation

Application 1: Affine Case

Application 2: Non-Affine Case

Conclusion

Model Based Representation

Proposition (Backward Representation)

Under the condition of the hypothesis \((H)\),

\[
VRP_T^T = \frac{1}{a^a(T - t)} \left[\int_t^T a^* \mathbb{E}_s \left(D_s [\mathbb{E}_t (V_T)] \right) dW_s - \int_t^T a^* \mathbb{E}_s^* \left(D_s^* [\mathbb{E}_t^* (V_T)] \right) dW_s^* \right] \\
+ \frac{1}{a^*(T - t)} \int_t^T \sigma^* (V_s) dW_s^* - \frac{1}{a(T - t)} \int_t^T \sigma (V_s) dW_s - B_{T,t} + B^*_{T,t}
\]

\[
VRP_T^T = 0 \quad \text{where,}
\]

\[
a(T - t)B_{T,t} = \int_t^T \mathbb{E}_s \left(\int_s^T D_s b(V_u) du \right) dW_s
\]

\[
a^*(T - t)B^*_{T,t} = \int_t^T \mathbb{E}_s^* \left(\int_s^T D_s^* b^*(V_u) du \right) dW_s^*.
\]
Corollary (Affine Case)

We assume that \(\beta(x) = \mu - ax \) and \(\beta^*(x) = \mu^* - a^* x \).

\[
VRP_t^T = \frac{1}{a(T-t)} \left(\int_t^T e^{-a(T-t)} E_s (D_s V_t) \, dW_s - \int_t^T \sigma(V_s) \, dW_s \right) - \frac{1}{a^*(T-t)} \left(\int_t^T e^{-a^*(T-t)} E^*_s (D^*_s V_t) \, dW^*_s - \int_t^T \sigma^*(V_s) \, dW^*_s \right)
\]

\(VRP_T^T = 0 \)
Heston Case [6]

Under the objective probability \mathbb{P}, for $0 \leq t \leq T$

$$S_t^x = x + \mu \int_0^t S_s^x ds + \int_0^t \sqrt{V_s} S_s^x dW_s^1$$

$$V_t = v_0 + \int_0^t \kappa (\theta - V_s) ds + \int_0^t \sigma \sqrt{V_s} dW_s^2.$$

Under the risk neutral probability \mathbb{P}^*,

$$S_t^x = x + \int_0^t rS_u^x du + \int_0^t \sqrt{V_t} S_u^x dW_u^{1*}, \quad 0 \leq t \leq T$$

$$V_t = v_0 + \int_0^t \kappa^* (\theta^* - V_u) du + \int_0^t \sigma \sqrt{V_u} dW_u^{2*}, \quad 0 \leq t \leq T$$

where

$$\kappa^* = \kappa + \lambda, \quad \theta^* = \frac{\kappa \theta}{\kappa + \lambda}.$$
VRP Modeling, Heston Case

Lemma

In one-dimensional setting and under the Feller condition $2\kappa \theta \geq \sigma^2$,

i) $\mathbb{P}\left(\inf\{t \geq 0, V_t = 0\} = \infty \right) = 1$, for $v_0 > 0$

ii) $\mathbb{E}(D_s V_t | \mathcal{F}_s) = \sigma e^{-\kappa(t-s)} \sqrt{V_s}, \quad s \leq t \leq T.$

Proposition

If $2\kappa \theta \geq \sigma^2$, the variance risk premium satisfies the backward representation

$$
\begin{cases}
VRP^T_T = \frac{\sigma}{\kappa(T-t)} \int_t^T f_T^\kappa(s) \sqrt{V_s} dW^2_s - \frac{\sigma}{\kappa^*(T-t)} \int_t^T f_T^{\kappa^*}(s) \sqrt{V_s} dW^{2^*}_s, \\
VRP^T_T = 0, \quad f_T^\rho(t) = e^{-\rho(T-t)} - 1, \quad 0 \leq t < T.
\end{cases}
$$
VRP Modeling, Heston Case

Lemma (Classical Result)

\[VRP_T^t = \frac{1}{T-t} F(\kappa, \theta, T-t, V_t) - \frac{1}{T-t} F(\kappa^*, \theta^*, T-t, V_t) \] \hspace{1cm} (9)

with \(VRP_T^T = 0 \) and where the function \(F \) is defined by

\[F(x, y, s, v) = \frac{1}{x} (e^{-xs} - 1)(v - y) + ys. \]
The variance process of the 3/2 Model is described by

\[V_t = v_0 + \int_0^t \eta V_s - b_\epsilon(V_s) ds + \int_0^t \sigma V_s^{3/2} dW_s^2, \quad \text{under} \quad \mathbb{P} \]

In Carr et al. [1] or in Itkin et al. [7], a risk neutral dynamic of the variance process of the 3/2 model is derived under some plausible assumptions.

\[V_t = v_0 + \int_0^t \eta^* V_s - b_\epsilon^*(V_s) ds + \int_0^t \sigma^* V_s^{3/2} dW_s^{2*}, \quad \text{under} \quad \mathbb{P}^* \]

\[v_0, \sigma, \sigma^* > 0 \quad \text{and} \quad b_\epsilon(x) = \epsilon x^2; \quad b_\epsilon^*(x) = \epsilon^* x^2. \]
 Proposition (Non-Affine Case)

If \(\frac{\epsilon}{\sigma^2} \geq \frac{3}{2} \), the variance risk premium \((\text{VRP}_t^T)\) satisfies for \(t \in [0, T] \),

\[
\text{VRP}_t^T = \frac{1}{\eta\eta^*(T-t)} \left[(\eta - \eta^*)v_T + \eta^*E_t(v_T) + \eta E_t^*(v_T) \right] - \frac{\sigma^*}{\eta^*(T-t)} \int_t^T V_s^{3/2} dW_s^{2*} + \frac{\sigma}{\eta(T-t)} \int_t^T V_s^{3/2} dW_s^2 \\
- B_{T,t}^{\sigma,\eta,\epsilon} + B_{T,T}^{\sigma^*,\eta^*,\epsilon^*},
\]

where \(\eta(t - T)B_{T,t}^{\sigma,\eta,\epsilon} = \int_t^T H_s^T(\sigma, \eta, \epsilon) dW_s^2 \)

\(\eta^*(t - T)B_{T,t}^{\sigma^*,\eta^*,\epsilon^*} = \int_{s=T}^{s=t} H_s^T(\sigma^*, \eta^*, \epsilon^*) dW_s^{2*} \)
VRP Modeling in the 3/2 Model

\[
H_s^T(x, y, z) = \int_s^T e^{y(s-u)} F_{x,y,z}^u(l_u) du,
\]

\[
C_{x,y}(t) = \frac{2y}{x^2(1 - e^{-yt})} \mathbb{1}_{\{x > 0, y \in \mathbb{R}^*\}}
\]

\[
F_{x,y,z}^u(v) = \sqrt{v} C_{x,y}(u) \int_0^1 \theta^2 \left(1 - \theta\right)^{\frac{2z}{x^2} - 3} \exp \left\{ - \theta \exp(-yu) C_{x,y}(u) v \theta \right\} d\theta.
\]
Proof

By the Chain rule (See [9]), we have

\[
\mathbb{E}_s \left(\int_s^T D_s b_\epsilon(V_t) dt \right) = \mathbb{E}_s \left(\int_s^T b'_\epsilon(V_t) D_s V_t dt \right)
\]

\[D_s V_t = D_s \left(\frac{1}{I_t} \right) = -V_t^2 D_s I_t \tag{10}\]

\[
\mathbb{E}_s \left(\int_s^T D_s b_\epsilon(V_t) dt \right) = 2\epsilon \mathbb{E}_s \left(\int_s^T V_t^3 D_s I_t dt \right)
\]

The derivative term \(D_s I_t\) is known from (cf. [10]). By Fubini’s theorem

\[
\mathbb{E}_s \left(\int_s^T D_s b_\epsilon(V_t) dt \right) = 2\epsilon \sigma \int_s^T \mathbb{E}_s \left(\frac{V_t^3 Y_t}{Y_s} \right) dt \tag{11}\]

where

\[
\frac{Y_t}{Y_s} = \exp\{-\eta(t - s)\} \frac{M_t}{M_s}, \quad M_t = \exp \left(\frac{\sigma}{2} \int_0^t \sqrt{V_u} dW_u \right) - \frac{\sigma^2}{8} \int_0^t V_u du.
\]
Proof

Let us consider the probability \mathbb{P}_M defined by the process M. The corresponding Radon-Nikodym densities is given by:

$$M_t = \frac{d\mathbb{P}_M}{d\mathbb{P}} \bigg|_{\mathcal{F}_t}, \quad M_t = \exp \left(\frac{\sigma}{2} \int_0^t \sqrt{V_u} dW_u^2 - \frac{\sigma^2}{8} \int_0^t V_u du \right).$$

$$\mathbb{E}_s \left(\int_s^T D_s b_{\epsilon}(V_t) dt \right) = 2\epsilon \sigma \int_s^T \mathbb{E}_s^M (V^3_t) dt, \quad (12)$$
Proof

\[l_t = \frac{1}{v_0} + \int_0^t (\epsilon + \sigma^2 - \eta l_s) ds - \int_0^t \sigma l_s^{1/2} dW_s^2, \quad 0 \leq t \leq T. \]

Under the probability measure \(\mathbb{P}_M \), \(l_t \) follows then

\[l_t = \frac{1}{v_0} + \int_0^t (\epsilon + \frac{1}{2} \sigma^2 - \eta l_s) ds - \int_0^t \sigma l_s^{1/2} dB_s^M, \quad 0 \leq t \leq T. \]

where \(B^M \) is a Brownian motion under \(\mathbb{P}_M \). The process \(B^M \) is defined by \(dB_t^M = dW_t^2 - \frac{1}{2} \sigma dt \). From the Lemma 1.1.5 in Diop et al. [5], we have

\[\mathbb{E}_s^M (V_t^3) = \frac{1}{2 \sqrt{l_s}} F_{\sigma, \eta, \epsilon}^t (l_s) \]

\[F_{x,y,z}^u (v) = \sqrt{v} \ C_{x,y} (u) \int_0^1 \theta^2 \left(1 - \theta \right) \frac{2z}{\sqrt{\theta}} - 3 \ \exp \left\{ - \theta \exp(-yu) C_{x,y} (u) v \theta \right\} d\theta. \]
From Proposition 1, we know that

\[\eta(t - T)B^{\sigma, \eta, \epsilon}_{T,t} = \int_t^T E_s \left(\int_s^T D_s b_\epsilon(V_u) du \right) dW_s^2 = \int_t^T H_s^T(\sigma, \eta, \epsilon) dW_s^2 \]

where

\[H_s^T(\sigma, \eta, \epsilon) = E_s \left(\int_s^T D_s b_\epsilon(V_u) du \right) = 2\epsilon\sigma \int_s^T E_s^M(V_t^3) dt \]

We obtain the same structure result for the risk neutral part \(B^{\sigma^*, \eta^*, \epsilon^*}_{T,t} \). The Proposition 1 and the previous equality conclude the proof.
Summary & Perspectives

- **Advantages**
 - Illiquid Markets
 - Long dated portfolios (Insurance and Finance)

- **Challenges**
 - Uniqueness of EMM, Calibration of SVM

- **Perspectives**
 - Jumps Extension
 - Non Markovian Modeling
Thank you for your attention
References

- J. Vom Scheidt, *Protter. p., stochastic integration and differential equations. a new approach. berlin etc..*
Fourier-Hermite Expansions Algorithm for Backward SDEs

Kossi K. Gnameho

Jointed work with Prof. Pelsser Antoon

HPC Finance Project, London (UK)

15 March 2016

Maastricht University
Outline

1. Introduction
2. Hermite Polynomials and BSDE
3. Uniqueness, Convergence
4. Applications
5. Conclusion
We consider

\[
\begin{cases}
-dY_t = g(t, W_t, Y_t, Z_t)dt - Z_t.dW_t, & 0 \leq t < T, \\
Y_T = \phi(W_T).
\end{cases}
\]

(H2) \quad |g(t_1, x_1, y_1, z_1) - g(t_2, x_2, y_2, z_2)| \leq K(|y_1 - y_2| + |z_1 - z_2|),

(H3) the function \(\phi \) is Lipschitz.

If \(g = 0 \),

\[
Y_t = \Phi(X_T) - \int_t^T Z_s dW_s, \quad \text{and} \quad Y_t = \mathbb{E}(\Phi(W_T)|\mathcal{F}_t).
\]
From Pardoux and Peng,

\[\forall t \in [0, T], \quad Y_t = u(t, W_t) \quad \text{and} \quad Z_t = (\nabla_x u)(t, W_t), \quad (2) \]

where

\[
\begin{aligned}
\left\{
\begin{array}{c}
\frac{\partial u}{\partial t}(t, x) + \frac{1}{2} \triangle u(t, x) + g(t, x, u, \nabla u) = 0 \\
u(T, x) = \phi(x), \quad \text{with} \quad (t, x) \in [0, T] \times \mathbb{R}^d.
\end{array}
\right.
\end{aligned}
\quad (3)
\]

\[\triangle u(t, x) =: \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} u(t, x). \]
Hermite Polynomials

The system of the probabilist’s Hermite polynomials \((H_n(x))_{n \in \mathbb{N}}\) can be defined, for \(x \in \mathbb{R}\)

\[
H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}, \quad \text{with} \quad n \in \mathbb{N}^* \quad \text{and} \quad H_0(x) = 1.
\]

\((H_n(x))_{n \in \mathbb{N}}\) are orthogonal with respect to

\[
\phi(x) = \exp\left\{-\frac{1}{2} x^2\right\}/\sqrt{2\pi}, \quad x \in \mathbb{R}.
\]

Hence for \((n, m) \in \mathbb{N}^2\), any pair \((H_n(x), H_m(x))\) satisfies the orthogonality relationship

\[
\int_{-\infty}^{\infty} H_n(x) H_m(x) \phi(x) \, dx = n! \delta_{nm}, \quad \delta_{nm} = \mathbb{1}_{\{n=m\}}, \quad (4)
\]
Hermite Polynomials

We will introduce the "generalized" Hermite polynomial

\[H_n^{[\theta]}(x) := \theta^{\frac{n}{2}} H_n \left(\frac{x}{\sqrt{\theta}} \right), \quad \theta > 0 \quad H_n^{[0]}(x) = x^n. \]

We have the addition formula

\[H_n^{[\theta]}(x + y) = \sum_{k=0}^{n} \binom{n}{k} y^{n-k} H_k^{[\theta]}(x). \]

\[\bar{H}_n^{[\theta]}(x) := \frac{1}{\sqrt{\theta^n n!}} H_n^{[\theta]}(x), \quad \theta > 0. \]
We introduce
\[
\tilde{H}^{[\theta]}_n(x) := \frac{1}{\sqrt{\theta^n n!}} H^{[\theta]}_n(x), \quad \theta > 0.
\]

This system of the generalized and normalized Hermite polynomials satisfies
\[
\int_{-\infty}^{\infty} \tilde{H}^{[\theta]}_n(x) \tilde{H}^{[\theta]}_m(x) \frac{e^{-\frac{1}{2} \frac{x^2}{\theta}}}{\sqrt{2\pi \theta}} \, dx = \delta_{nm}, \quad m, n \in \mathbb{N}, \quad \theta > 0,
\]
(7)
Hermite Polynomials Basis

This system satisfies

\[
\int_{-\infty}^{\infty} \bar{H}^{[\theta]}_n(x) \bar{H}^{[\theta]}_m(x) \frac{e^{-\frac{1}{2} \frac{x^2}{\theta}}}{\sqrt{2\pi\theta}} \, dx = \delta_{nm}, \quad m, n \in \mathbb{N}, \quad \theta > 0, \quad (8)
\]

and follows the martingale equality

\[
\mathbb{E} \left[\bar{H}^{[T]}_n(W_T) \big| \mathcal{F}_t \right] = \left(\frac{t}{T} \right)^{n/2} \bar{H}^{[t]}_n(W_t), \quad 0 \leq t \leq T. \quad (9)
\]

\[
\partial_x \bar{H}^{[\theta]}_n(x) = \left(\frac{n}{\theta} \right)^{1/2} \bar{H}^{[\theta]}_{n-1}(x), \quad \theta > 0, \quad n > 0. \quad (10)
\]
Decomposition of the BSDE

In \((\bar{H}^t)_{t \in [0, T]}\), for a fixed \(t \in [0, T]\)

\[
\begin{cases}
Y_t = \sum_{k \geq 0} \alpha_k(t) \bar{H}_k^t(W_t) \quad \text{a.s.,} \\
Z_t = \sum_{k \geq 0} \beta_k(t) \bar{H}_k^t(W_t) = \sum_{k \geq 0} \left(\frac{k + 1}{t}\right)^{1/2} \alpha_{k+1}(t) \bar{H}_k^t(W_t) \quad \text{a.s.,}
\end{cases}
\]

\(\alpha_k(t) := \mathbb{E} \left[Y_t \bar{H}_k^t(W_t) \right], \quad \gamma_k(t) := \mathbb{E} \left[g(t, W_t, Y_t, Z_t) \bar{H}_k^t(W_t) \right].\)
We know \[\mathbb{E}(Y_T | \mathcal{F}_t) - Y_t + \mathbb{E}\left(\int_t^T g(s, W_s, Y_s, Z_s) \, ds | \mathcal{F}_t \right) = 0. \]

\[\left(\frac{t}{T} \right)^{k/2} \alpha_k(T) - \alpha_k(t) + \int_t^T \left(\frac{t}{s} \right)^{k/2} \gamma_k(s, \alpha(s)) \, ds = 0, \quad k = 0, 1, 2, \ldots \]

we obtain the CODEs

\[t \dot{\alpha}_k(t) - \frac{k}{2} \alpha_k(t) + t \gamma_k(t, \alpha(t)) = 0, \quad \text{with} \quad k = 0, 1, 2, \ldots, \quad t \in (0, T]. \quad (11) \]
Affine Example

Let us consider the example of the BSDE where the driver is given by

\[g(t, x, y, z) = ay + bz, \quad a, b \in \mathbb{R}. \]

\(\gamma_k(t) \) represents \(g \) at \(t \),

\[\gamma_k(t) = a\alpha_k(t) + b \left(\frac{k + 1}{t} \right)^{1/2} \alpha_{k+1}(t), \quad t \in (0, T]. \]

Therefore we solve the countable systems of ODEs

\[\dot{\alpha}_k(t) = (a - \frac{k}{2t})\alpha_k(t) + b \left(\frac{k + 1}{t} \right)^{1/2} \alpha_{k+1}(t), \quad k = 0, 1, 2, \ldots \]

The truncated solution of the corresponding BSDE is

\[Y_t^{(N)} = e^{a(T-t)} \sum_{k=0}^{N} \alpha_k(T) \left(\frac{t}{T} \right)^{k/2} \tilde{H}_j[t] (W_t + b(T - t)) \rightarrow Y_t \]
One-Sided Lipschitz CODEs Problems

In the system \((\tilde{H}^t)_{t \in (0, T]}\), we formulate the following countable backward problem

\[
(I) \left\{ \begin{array}{l}
\dot{\alpha}(t) = f(t, \alpha(t)), \quad 0 \leq t < T \\
\alpha(T) \text{ is the terminal condition}
\end{array} \right.
\]

where \(\alpha(T) = (\alpha_k(T))_{k \geq 1}\) and \(f(t, \alpha(t))\) denotes an infinite dimensional vector where \(f_k(t, \alpha(t)) = -\frac{k}{2t}\alpha_k(t) + \gamma_k(t, \alpha(t))\) for each \(k \in \mathbb{N}\).
If the solution of the problem (I) exists, then the solution is unique on the time interval $[0, T]$.

Proof

$$
\Delta \alpha^{1,2}_k(t) = \alpha^1_k(t) - \alpha^2_k(t), \quad \Delta \beta^{1,2}_k(t) = \left(\frac{k + 1}{t} \right)^{1/2} \Delta \alpha^{1,2}_{k+1}(t).
$$

$$
|\Delta \alpha^{1,2}_k(t)| = \left| \int_t^T \left(\frac{t}{s} \right)^{k/2} (\gamma^1_k(s) - \gamma^2_k(s)) ds \right|,
$$

$$
= \left| \int_t^T \left(\frac{t}{s} \right)^{k/2} \mathbb{E} \left[(g(s, W_s, Y^1_s, Z^1_s) - g(s, W_s, Y^2_s, Z^2_s)) \tilde{H}^{[t]}_k(W_s) \right] ds. \right.
$$

(13)
Proof

By the Lipschitz property of g,

$$|\Delta \alpha^{1,2}_k(t)| \leq K \int_t^T \left(\frac{t}{s} \right)^{k/2} |\Delta \alpha^{1,2}_k(s)|ds + K \int_t^T |\Delta \beta^{1,2}_k(s)|ds.$$

By the Gronwall inequality and the Cauchy-Schwartz inequality,

$$|\Delta \alpha^{1,2}_k(t)|^2 \leq K^2 T \exp(2(T-t)) \times \int_t^T |\Delta \beta^{1,2}_k(s)|^2 ds.$$

By Itô’s formula

$$\mathbb{E} \left(\left| \Delta Y^{1,2}_t \right|^2 + \int_t^T |\Delta Z^{1,2}_s|^2 ds \right) \leq 2K \int_t^T \mathbb{E} |\Delta Y^{1,2}_s|^2 ds$$

$$+ 2K \int_t^T \mathbb{E} |\Delta Y^{1,2}_s| |\Delta Z^{1,2}_s| ds.$$
Proof

By Young Inequality ($\forall \epsilon \geq 0, \ 2ab \leq \frac{1}{\epsilon} a^2 + \epsilon b^2$), there exists a constant $C > 0$ such that

$$(1 - \epsilon K) \int_t^T \mathbb{E} |\Delta Z_{s}^{1,2}|^2 \, ds \leq K(2 + 1/\epsilon) \int_t^T \mathbb{E} |\Delta Y_{s}^{1,2}|^2 \, ds, \quad \forall \epsilon \geq 0.$$

By choosing $\epsilon = 2/K$

$$\sum_{k \geq 0} \int_t^T |\Delta \beta_{k}^{1,2} (s)|^2 \, ds \leq C \int_t^T \sum_{k \geq 0} |\Delta \alpha_{k}^{1,2} (s)|^2 \, ds.$$

We obtain from above,

$$\sum_{k \geq 0} |\Delta \alpha_{k}^{1,2} (t)|^2 \leq CK^2 T \exp 2(T - t) \times \int_t^T \sum_{k \geq 0} |\Delta \alpha_{k}^{1,2} (s)|^2 \, ds.$$

By the Gronwall inequality

$$\sum_{k > 0} |\Delta \alpha_{k}^{1,2} (t)|^2 = 0, \quad \Rightarrow \quad \alpha_{k}^{1}(t) = \alpha_{k}^{2}(t), \quad k = 0, 1, 2, \ldots$$
Projected Problems (Stiff system of ODEs)

\[
(l_n) \begin{cases}
\dot{\alpha}^n(t) = P_n f(t, \alpha^n(t)), & 0 \leq t < T \\
\alpha^n(T) = P_n \alpha(T), & t = T
\end{cases}
\]

Lemma

If the functional vector \(f \) is continuous on the set \([0, T] \times l^2(\mathbb{N})\), then for \(\alpha, \beta \in l^2(\mathbb{N}) \), \(f \) satisfies the following quadratic inequality

\[
(f(t, \alpha) - f(t, \beta), \alpha - \beta) \leq K(1 + \frac{K}{2})|\alpha - \beta|^2, \quad \text{for all} \quad t \in [0, T]
\]
Convergence of the Truncated Solution

Lemma

Under the assumption (H), the function $\alpha_k(.)$ solves the following equivalent ODE. For all $(k, t) \in \mathbb{N} \times [0, T],$

$$\dot{\alpha}_k(t) = f_k(t, \alpha(t)) = -\mathbb{E}\left(\partial_t F_k(t, W_t) + \frac{1}{2} \partial^2_{xx} F_k(t, W_t) \right)$$

where $F_k(t, x) = u(t, x) H_k^{[t]}(x)$ and u solves the PDE (3).
Let us consider the previous family of the orthogonal projection operators \((P_n)_{n \geq 1}\) in the span of the first \(n\) first basis. The truncated solution \(\alpha^n\) of the system of ordinary differential equations \((I_n)\) converges uniformly to the true solution on the time interval \([0, T]\), when \(n \to \infty\).

The proof of the result is based on the Theorem 7.1. in Klaus Deimling.
Description of the algorithm

- **Initialisation**: Approximate the terminal condition $\bar{Y}_T = \phi(W_T)$ and compute the coefficients $\bar{\alpha}_k(T) = \alpha_k(T)$ and $\bar{\beta}_k(T) = \beta_k(T) = \alpha_{k+1}(T)\left(\frac{k+1}{T}\right)^{1/2}$ for $k = 0, 1, 2, \ldots$

- For $i = (N - 1)$ to 0, on each sub-interval $[t_i, t_{i+1}] \subset [0, T]$ with $t_i, t_{i+1} \in \pi$,
 - compute $\bar{\gamma}^*_{t_{i+1}}$ by the following projection

$$
\begin{align*}
\text{Find} \quad \bar{\gamma}^*_{t_{i+1}} &= (\bar{\gamma}_1(t_{i+1}), \bar{\gamma}_2(t_{i+1}), \bar{\gamma}_2(t_{i+1}), \bar{\gamma}_3(t_{i+1}), \ldots) \quad \text{such that}, \\
J(\bar{\gamma}^*_{t_{i+1}}) &= \inf_\xi \mathbb{E} \left| \xi \bar{H}_i(W_{t_{i+1}}) - g(t_{i+1}, W_{t_{i+1}}, \bar{Y}_{t_{i+1}}, \bar{Z}_{t_{i+1}}) \right|^2,
\end{align*}
$$

where the family of function $\bar{H}_i := \left(\bar{H}_0^{[t_{i+1}]}, \bar{H}_1^{[t_{i+1}]}, \bar{H}_2^{[t_{i+1}]}, \ldots\right)$.
Description of the algorithm

- compute $\bar{\alpha}_{t_i}$ and $\bar{\beta}_k(t_i)$

\[
\begin{align*}
\bar{\alpha}_k(t_i) &= \left(\frac{t_i}{t_{i+1}}\right)^{k/2} \bar{\alpha}_k(t_{i+1}) + \Delta_i \left(\frac{t_i}{t_{i+1}}\right)^{k/2} \bar{\gamma}_k(t_{i+1}) = 0, \\
\bar{\beta}_k(t_i) &= \bar{\alpha}_{k+1}(t_i)(\frac{k+1}{t_i})^{1/2} \quad k = 0, 1, 2, \ldots
\end{align*}
\]

- compute

\[\bar{Y}_{t_i} = \sum_{k \geq 0} \bar{\alpha}_k(t_i) \bar{H}^{[t_i]}_k(W_{t_i}), \quad \bar{Z}_{t_i} = \sum_{k \geq 0} \bar{\beta}_k(t_i) \bar{H}^{[t_i]}_k(W_{t_i})\]

- **End of the algorithm**

The couple of coefficients $(\bar{\alpha}, \bar{\gamma})$ is the Euler approximation of the couple (α, γ).
Theorem

Under the assumptions \((H)\) and considering the previous uniform subdivision \(\pi\) of the interval \([0, T]\), there exists a positive constant \(C\) independent of \(\pi\) such that

\[
\max_{0 \leq i < N} \mathbb{E} |Y_{t_i} - \bar{Y}_{t_i}|^2 + \mathbb{E} \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} |Z_s - \bar{Z}_{t_i}|^2 ds \leq C|\pi|. \tag{14}
\]

The couple of coefficients \((\bar{Y}, \bar{Z})\) are the Euler approximation of the couple \((Y, Z)\).
We consider the system

\[
\begin{cases}
-dY_t = f(s, W_s, Y_s, Z_s)dt - Z_t dW_t, & 0 \leq t < T, \\
Y_T = \phi(W_T), & t = T = 1,
\end{cases}
\] (15)

where

\[
\begin{align*}
\phi(x) &= x \arctan(x) - \ln(\sqrt{1 + x^2}) \\
f(t, W_t, Y_t, Z_t) &= -\frac{1}{2(1 + \tan^2(Z_t))}.
\end{align*}
\]

Thus,

\[
(Y_t, Z_t) = \left(-\frac{1}{2} \ln(1 + W_t^2) + W_t \arctan(W_t) , \arctan(W_t)\right) \quad \text{a.s.}
\]

\[
(Y_0, Z_0) = (0, 0).
\]
Log-Error Curve

\[k = 4, \ M = 10^4 \]

Figure: Log-Error curve to estimate \((Y_0, Z_0) = (0, 0)\)
Example 2

We consider the system

\[
\begin{cases}
-dY_t = g(s, W_s, Y_s, Z_s)dt - Z_t dW_t, & 0 \leq t < T \\
Y_1 = \phi(W_1), & T = 1,
\end{cases}
\]

where the functions \(f \) and \(\phi \) are defined as follows;

\[
\phi(x) = \cos(x + 1), \quad x \in \mathbb{R},
\]

\[
g(t, X_t, Y_t, Z_t) = Z_t(Y_t + 1) - \frac{1}{2}(Y_t - \sin(2(t + W_t))) + \cos(t + W_t).
\]

The solution is

\[
(Y_t, Z_t) = (\cos(W_t + t), -\sin(W_t + t)), \quad a.s.
\]

\[
(Y_0, Z_0) = (1, 0).
\]
Log-Error Curve

\[k = 4, \ M = 10^4 \]

Figure: Log-Error curve to estimate \((Y_0, Z_0) = (0, 0)\)
Summary & Perspectives

- **Advantages**
 - Simple Algorithm, Higher Scheme Order
 - High dimensions

- **Limits**
 - Global control of the propagation error
 - Curse of dimensionality

- **Perspectives**
 - Full diffusion Case, semimartingale + Jump case
Two-Step Valuation of the Unit Linked Contract with Mortality Risk

K.K. Gnameho

Jointed work with Prof. Pelsser Antoon

HPC Finance Project, London (UK)

15 March 2016

Maastricht University
Outline

1. Introduction
2. Risk measures and BSDE
3. Two-Step Valuation
4. Applications